Expand
5x^{2}+4xy-6x+3y^{2}+4y+6
Evaluate
\left(x+y\right)\left(5x+3y\right)-2\left(x-1\right)\left(2y+3\right)
Share
Copied to clipboard
5x^{2}+3xy+5yx+3y^{2}-2\left(x-1\right)\left(2y+3\right)
Apply the distributive property by multiplying each term of x+y by each term of 5x+3y.
5x^{2}+8xy+3y^{2}-2\left(x-1\right)\left(2y+3\right)
Combine 3xy and 5yx to get 8xy.
5x^{2}+8xy+3y^{2}+\left(-2x+2\right)\left(2y+3\right)
Use the distributive property to multiply -2 by x-1.
5x^{2}+8xy+3y^{2}-4xy-6x+4y+6
Apply the distributive property by multiplying each term of -2x+2 by each term of 2y+3.
5x^{2}+4xy+3y^{2}-6x+4y+6
Combine 8xy and -4xy to get 4xy.
5x^{2}+3xy+5yx+3y^{2}-2\left(x-1\right)\left(2y+3\right)
Apply the distributive property by multiplying each term of x+y by each term of 5x+3y.
5x^{2}+8xy+3y^{2}-2\left(x-1\right)\left(2y+3\right)
Combine 3xy and 5yx to get 8xy.
5x^{2}+8xy+3y^{2}+\left(-2x+2\right)\left(2y+3\right)
Use the distributive property to multiply -2 by x-1.
5x^{2}+8xy+3y^{2}-4xy-6x+4y+6
Apply the distributive property by multiplying each term of -2x+2 by each term of 2y+3.
5x^{2}+4xy+3y^{2}-6x+4y+6
Combine 8xy and -4xy to get 4xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}