Evaluate
\frac{4y\left(5x-3y\right)}{3}
Expand
\frac{20xy}{3}-4y^{2}
Share
Copied to clipboard
2x^{2}-2xy+2yx-2y^{2}+\left(3y-2x\right)\left(\frac{3}{2}x-\frac{1}{3}y\right)-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Apply the distributive property by multiplying each term of x+y by each term of 2x-2y.
2x^{2}-2y^{2}+\left(3y-2x\right)\left(\frac{3}{2}x-\frac{1}{3}y\right)-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine -2xy and 2yx to get 0.
2x^{2}-2y^{2}+3y\times \frac{3}{2}x+3y\left(-\frac{1}{3}\right)y-2x\times \frac{3}{2}x-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Apply the distributive property by multiplying each term of 3y-2x by each term of \frac{3}{2}x-\frac{1}{3}y.
2x^{2}-2y^{2}+3y\times \frac{3}{2}x+3y^{2}\left(-\frac{1}{3}\right)-2x\times \frac{3}{2}x-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply y and y to get y^{2}.
2x^{2}-2y^{2}+3y\times \frac{3}{2}x+3y^{2}\left(-\frac{1}{3}\right)-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply x and x to get x^{2}.
2x^{2}-2y^{2}+\frac{3\times 3}{2}yx+3y^{2}\left(-\frac{1}{3}\right)-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Express 3\times \frac{3}{2} as a single fraction.
2x^{2}-2y^{2}+\frac{9}{2}yx+3y^{2}\left(-\frac{1}{3}\right)-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply 3 and 3 to get 9.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Cancel out 3 and 3.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-3x^{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply -2 times \frac{3}{2}.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-3x^{2}+\frac{-2\left(-1\right)}{3}xy-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Express -2\left(-\frac{1}{3}\right) as a single fraction.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-3x^{2}+\frac{2}{3}xy-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply -2 and -1 to get 2.
2x^{2}-2y^{2}+\frac{31}{6}yx-y^{2}-3x^{2}-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine \frac{9}{2}yx and \frac{2}{3}xy to get \frac{31}{6}yx.
2x^{2}-3y^{2}+\frac{31}{6}yx-3x^{2}-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine -2y^{2} and -y^{2} to get -3y^{2}.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x\times \frac{1}{2}y-x^{2}+2y\times \frac{1}{2}y-2yx\right)
Apply the distributive property by multiplying each term of x+2y by each term of \frac{1}{2}y-x.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x\times \frac{1}{2}y-x^{2}+2y^{2}\times \frac{1}{2}-2yx\right)
Multiply y and y to get y^{2}.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x\times \frac{1}{2}y-x^{2}+y^{2}-2yx\right)
Cancel out 2 and 2.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(-\frac{3}{2}xy-x^{2}+y^{2}\right)
Combine x\times \frac{1}{2}y and -2yx to get -\frac{3}{2}xy.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(-\frac{3}{2}xy\right)-\left(-x^{2}\right)-y^{2}
To find the opposite of -\frac{3}{2}xy-x^{2}+y^{2}, find the opposite of each term.
-x^{2}-3y^{2}+\frac{31}{6}yx+\frac{3}{2}xy-\left(-x^{2}\right)-y^{2}
The opposite of -\frac{3}{2}xy is \frac{3}{2}xy.
-x^{2}-3y^{2}+\frac{31}{6}yx+\frac{3}{2}xy+x^{2}-y^{2}
The opposite of -x^{2} is x^{2}.
-x^{2}-3y^{2}+\frac{20}{3}yx+x^{2}-y^{2}
Combine \frac{31}{6}yx and \frac{3}{2}xy to get \frac{20}{3}yx.
-3y^{2}+\frac{20}{3}yx-y^{2}
Combine -x^{2} and x^{2} to get 0.
-4y^{2}+\frac{20}{3}yx
Combine -3y^{2} and -y^{2} to get -4y^{2}.
2x^{2}-2xy+2yx-2y^{2}+\left(3y-2x\right)\left(\frac{3}{2}x-\frac{1}{3}y\right)-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Apply the distributive property by multiplying each term of x+y by each term of 2x-2y.
2x^{2}-2y^{2}+\left(3y-2x\right)\left(\frac{3}{2}x-\frac{1}{3}y\right)-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine -2xy and 2yx to get 0.
2x^{2}-2y^{2}+3y\times \frac{3}{2}x+3y\left(-\frac{1}{3}\right)y-2x\times \frac{3}{2}x-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Apply the distributive property by multiplying each term of 3y-2x by each term of \frac{3}{2}x-\frac{1}{3}y.
2x^{2}-2y^{2}+3y\times \frac{3}{2}x+3y^{2}\left(-\frac{1}{3}\right)-2x\times \frac{3}{2}x-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply y and y to get y^{2}.
2x^{2}-2y^{2}+3y\times \frac{3}{2}x+3y^{2}\left(-\frac{1}{3}\right)-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply x and x to get x^{2}.
2x^{2}-2y^{2}+\frac{3\times 3}{2}yx+3y^{2}\left(-\frac{1}{3}\right)-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Express 3\times \frac{3}{2} as a single fraction.
2x^{2}-2y^{2}+\frac{9}{2}yx+3y^{2}\left(-\frac{1}{3}\right)-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply 3 and 3 to get 9.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-2x^{2}\times \frac{3}{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Cancel out 3 and 3.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-3x^{2}-2x\left(-\frac{1}{3}\right)y-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply -2 times \frac{3}{2}.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-3x^{2}+\frac{-2\left(-1\right)}{3}xy-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Express -2\left(-\frac{1}{3}\right) as a single fraction.
2x^{2}-2y^{2}+\frac{9}{2}yx-y^{2}-3x^{2}+\frac{2}{3}xy-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Multiply -2 and -1 to get 2.
2x^{2}-2y^{2}+\frac{31}{6}yx-y^{2}-3x^{2}-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine \frac{9}{2}yx and \frac{2}{3}xy to get \frac{31}{6}yx.
2x^{2}-3y^{2}+\frac{31}{6}yx-3x^{2}-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine -2y^{2} and -y^{2} to get -3y^{2}.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x+2y\right)\left(\frac{1}{2}y-x\right)
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x\times \frac{1}{2}y-x^{2}+2y\times \frac{1}{2}y-2yx\right)
Apply the distributive property by multiplying each term of x+2y by each term of \frac{1}{2}y-x.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x\times \frac{1}{2}y-x^{2}+2y^{2}\times \frac{1}{2}-2yx\right)
Multiply y and y to get y^{2}.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(x\times \frac{1}{2}y-x^{2}+y^{2}-2yx\right)
Cancel out 2 and 2.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(-\frac{3}{2}xy-x^{2}+y^{2}\right)
Combine x\times \frac{1}{2}y and -2yx to get -\frac{3}{2}xy.
-x^{2}-3y^{2}+\frac{31}{6}yx-\left(-\frac{3}{2}xy\right)-\left(-x^{2}\right)-y^{2}
To find the opposite of -\frac{3}{2}xy-x^{2}+y^{2}, find the opposite of each term.
-x^{2}-3y^{2}+\frac{31}{6}yx+\frac{3}{2}xy-\left(-x^{2}\right)-y^{2}
The opposite of -\frac{3}{2}xy is \frac{3}{2}xy.
-x^{2}-3y^{2}+\frac{31}{6}yx+\frac{3}{2}xy+x^{2}-y^{2}
The opposite of -x^{2} is x^{2}.
-x^{2}-3y^{2}+\frac{20}{3}yx+x^{2}-y^{2}
Combine \frac{31}{6}yx and \frac{3}{2}xy to get \frac{20}{3}yx.
-3y^{2}+\frac{20}{3}yx-y^{2}
Combine -x^{2} and x^{2} to get 0.
-4y^{2}+\frac{20}{3}yx
Combine -3y^{2} and -y^{2} to get -4y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}