Evaluate
3x^{2}-2xy-2y^{2}
Expand
3x^{2}-2xy-2y^{2}
Share
Copied to clipboard
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(2x+y\right)\left(-2x+y\right)
Apply the distributive property by multiplying each term of x+y by each term of -x-y.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(-4x^{2}+2xy-2yx+y^{2}\right)
Apply the distributive property by multiplying each term of 2x+y by each term of -2x+y.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(-4x^{2}+y^{2}\right)
Combine 2xy and -2yx to get 0.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(-4x^{2}\right)-y^{2}
To find the opposite of -4x^{2}+y^{2}, find the opposite of each term.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}+4x^{2}-y^{2}
The opposite of -4x^{2} is 4x^{2}.
x\left(-x\right)-xy+y\left(-x\right)-2y^{2}+4x^{2}
Combine -y^{2} and -y^{2} to get -2y^{2}.
x^{2}\left(-1\right)-xy+y\left(-1\right)x-2y^{2}+4x^{2}
Multiply x and x to get x^{2}.
x^{2}\left(-1\right)-2xy-2y^{2}+4x^{2}
Combine -xy and y\left(-1\right)x to get -2xy.
3x^{2}-2xy-2y^{2}
Combine x^{2}\left(-1\right) and 4x^{2} to get 3x^{2}.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(2x+y\right)\left(-2x+y\right)
Apply the distributive property by multiplying each term of x+y by each term of -x-y.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(-4x^{2}+2xy-2yx+y^{2}\right)
Apply the distributive property by multiplying each term of 2x+y by each term of -2x+y.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(-4x^{2}+y^{2}\right)
Combine 2xy and -2yx to get 0.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}-\left(-4x^{2}\right)-y^{2}
To find the opposite of -4x^{2}+y^{2}, find the opposite of each term.
x\left(-x\right)-xy+y\left(-x\right)-y^{2}+4x^{2}-y^{2}
The opposite of -4x^{2} is 4x^{2}.
x\left(-x\right)-xy+y\left(-x\right)-2y^{2}+4x^{2}
Combine -y^{2} and -y^{2} to get -2y^{2}.
x^{2}\left(-1\right)-xy+y\left(-1\right)x-2y^{2}+4x^{2}
Multiply x and x to get x^{2}.
x^{2}\left(-1\right)-2xy-2y^{2}+4x^{2}
Combine -xy and y\left(-1\right)x to get -2xy.
3x^{2}-2xy-2y^{2}
Combine x^{2}\left(-1\right) and 4x^{2} to get 3x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}