Solve for x (complex solution)
x=-1
x=1
x=\sqrt{2}i\approx 1.414213562i
x=-\sqrt{2}i\approx -0-1.414213562i
Solve for x
x=-1
x=1
Graph
Share
Copied to clipboard
x^{2}+2xx^{2}+\left(x^{2}\right)^{2}+\left(x^{2}-x\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+x^{2}\right)^{2}.
x^{2}+2x^{3}+\left(x^{2}\right)^{2}+\left(x^{2}-x\right)^{2}=4
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
x^{2}+2x^{3}+x^{4}+\left(x^{2}-x\right)^{2}=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+2x^{3}+x^{4}+\left(x^{2}\right)^{2}-2x^{2}x+x^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x\right)^{2}.
x^{2}+2x^{3}+x^{4}+x^{4}-2x^{2}x+x^{2}=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+2x^{3}+x^{4}+x^{4}-2x^{3}+x^{2}=4
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{2}+2x^{3}+2x^{4}-2x^{3}+x^{2}=4
Combine x^{4} and x^{4} to get 2x^{4}.
x^{2}+2x^{4}+x^{2}=4
Combine 2x^{3} and -2x^{3} to get 0.
2x^{2}+2x^{4}=4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x^{4}-4=0
Subtract 4 from both sides.
2t^{2}+2t-4=0
Substitute t for x^{2}.
t=\frac{-2±\sqrt{2^{2}-4\times 2\left(-4\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 2 for b, and -4 for c in the quadratic formula.
t=\frac{-2±6}{4}
Do the calculations.
t=1 t=-2
Solve the equation t=\frac{-2±6}{4} when ± is plus and when ± is minus.
x=-1 x=1 x=-\sqrt{2}i x=\sqrt{2}i
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{2}+2xx^{2}+\left(x^{2}\right)^{2}+\left(x^{2}-x\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+x^{2}\right)^{2}.
x^{2}+2x^{3}+\left(x^{2}\right)^{2}+\left(x^{2}-x\right)^{2}=4
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
x^{2}+2x^{3}+x^{4}+\left(x^{2}-x\right)^{2}=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+2x^{3}+x^{4}+\left(x^{2}\right)^{2}-2x^{2}x+x^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x\right)^{2}.
x^{2}+2x^{3}+x^{4}+x^{4}-2x^{2}x+x^{2}=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+2x^{3}+x^{4}+x^{4}-2x^{3}+x^{2}=4
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{2}+2x^{3}+2x^{4}-2x^{3}+x^{2}=4
Combine x^{4} and x^{4} to get 2x^{4}.
x^{2}+2x^{4}+x^{2}=4
Combine 2x^{3} and -2x^{3} to get 0.
2x^{2}+2x^{4}=4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x^{4}-4=0
Subtract 4 from both sides.
2t^{2}+2t-4=0
Substitute t for x^{2}.
t=\frac{-2±\sqrt{2^{2}-4\times 2\left(-4\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 2 for b, and -4 for c in the quadratic formula.
t=\frac{-2±6}{4}
Do the calculations.
t=1 t=-2
Solve the equation t=\frac{-2±6}{4} when ± is plus and when ± is minus.
x=1 x=-1
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}