Solve for x
x=-d+\frac{9}{d}
d\neq 0
Solve for d
d=\frac{\sqrt{x^{2}+36}-x}{2}
d=\frac{-\sqrt{x^{2}+36}-x}{2}
Graph
Share
Copied to clipboard
x^{2}+3xd+2d^{2}-x\left(x+d\right)=18
Use the distributive property to multiply x+d by x+2d and combine like terms.
x^{2}+3xd+2d^{2}-\left(x^{2}+xd\right)=18
Use the distributive property to multiply x by x+d.
x^{2}+3xd+2d^{2}-x^{2}-xd=18
To find the opposite of x^{2}+xd, find the opposite of each term.
3xd+2d^{2}-xd=18
Combine x^{2} and -x^{2} to get 0.
2xd+2d^{2}=18
Combine 3xd and -xd to get 2xd.
2xd=18-2d^{2}
Subtract 2d^{2} from both sides.
2dx=18-2d^{2}
The equation is in standard form.
\frac{2dx}{2d}=\frac{18-2d^{2}}{2d}
Divide both sides by 2d.
x=\frac{18-2d^{2}}{2d}
Dividing by 2d undoes the multiplication by 2d.
x=-d+\frac{9}{d}
Divide -2d^{2}+18 by 2d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}