Solve for b (complex solution)
\left\{\begin{matrix}\\b=-2x-2\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=4\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=-2x-2\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=4\end{matrix}\right.
Solve for x
x=-\frac{b}{2}-1
x=4
Graph
Share
Copied to clipboard
x^{2}-4x+bx-4b+\left(-4+x\right)\left(x+2\right)=0
Use the distributive property to multiply x+b by x-4.
x^{2}-4x+bx-4b-2x-8+x^{2}=0
Use the distributive property to multiply -4+x by x+2 and combine like terms.
x^{2}-6x+bx-4b-8+x^{2}=0
Combine -4x and -2x to get -6x.
2x^{2}-6x+bx-4b-8=0
Combine x^{2} and x^{2} to get 2x^{2}.
-6x+bx-4b-8=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
bx-4b-8=-2x^{2}+6x
Add 6x to both sides.
bx-4b=-2x^{2}+6x+8
Add 8 to both sides.
\left(x-4\right)b=-2x^{2}+6x+8
Combine all terms containing b.
\left(x-4\right)b=8+6x-2x^{2}
The equation is in standard form.
\frac{\left(x-4\right)b}{x-4}=-\frac{2\left(x-4\right)\left(x+1\right)}{x-4}
Divide both sides by x-4.
b=-\frac{2\left(x-4\right)\left(x+1\right)}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
b=-2x-2
Divide -2\left(-4+x\right)\left(1+x\right) by x-4.
x^{2}-4x+bx-4b+\left(-4+x\right)\left(x+2\right)=0
Use the distributive property to multiply x+b by x-4.
x^{2}-4x+bx-4b-2x-8+x^{2}=0
Use the distributive property to multiply -4+x by x+2 and combine like terms.
x^{2}-6x+bx-4b-8+x^{2}=0
Combine -4x and -2x to get -6x.
2x^{2}-6x+bx-4b-8=0
Combine x^{2} and x^{2} to get 2x^{2}.
-6x+bx-4b-8=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
bx-4b-8=-2x^{2}+6x
Add 6x to both sides.
bx-4b=-2x^{2}+6x+8
Add 8 to both sides.
\left(x-4\right)b=-2x^{2}+6x+8
Combine all terms containing b.
\left(x-4\right)b=8+6x-2x^{2}
The equation is in standard form.
\frac{\left(x-4\right)b}{x-4}=-\frac{2\left(x-4\right)\left(x+1\right)}{x-4}
Divide both sides by -4+x.
b=-\frac{2\left(x-4\right)\left(x+1\right)}{x-4}
Dividing by -4+x undoes the multiplication by -4+x.
b=-2x-2
Divide -2\left(-4+x\right)\left(1+x\right) by -4+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}