Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&a=-2\text{ or }a=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}\\a=-2\text{; }a=0\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=-2\text{; }a=0\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&a=-2\text{ or }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-ax^{2}-2a^{2}x^{2}+3ax\left(x+ax\right)=x^{2}
Use the distributive property to multiply x+ax by x-2ax and combine like terms.
x^{2}-ax^{2}-2a^{2}x^{2}+3ax^{2}+3a^{2}x^{2}=x^{2}
Use the distributive property to multiply 3ax by x+ax.
x^{2}+2ax^{2}-2a^{2}x^{2}+3a^{2}x^{2}=x^{2}
Combine -ax^{2} and 3ax^{2} to get 2ax^{2}.
x^{2}+2ax^{2}+a^{2}x^{2}=x^{2}
Combine -2a^{2}x^{2} and 3a^{2}x^{2} to get a^{2}x^{2}.
x^{2}+2ax^{2}+a^{2}x^{2}-x^{2}=0
Subtract x^{2} from both sides.
2ax^{2}+a^{2}x^{2}=0
Combine x^{2} and -x^{2} to get 0.
\left(2a+a^{2}\right)x^{2}=0
Combine all terms containing x.
x^{2}=\frac{0}{a^{2}+2a}
Dividing by 2a+a^{2} undoes the multiplication by 2a+a^{2}.
x^{2}=0
Divide 0 by 2a+a^{2}.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
x^{2}-ax^{2}-2a^{2}x^{2}+3ax\left(x+ax\right)=x^{2}
Use the distributive property to multiply x+ax by x-2ax and combine like terms.
x^{2}-ax^{2}-2a^{2}x^{2}+3ax^{2}+3a^{2}x^{2}=x^{2}
Use the distributive property to multiply 3ax by x+ax.
x^{2}+2ax^{2}-2a^{2}x^{2}+3a^{2}x^{2}=x^{2}
Combine -ax^{2} and 3ax^{2} to get 2ax^{2}.
x^{2}+2ax^{2}+a^{2}x^{2}=x^{2}
Combine -2a^{2}x^{2} and 3a^{2}x^{2} to get a^{2}x^{2}.
x^{2}+2ax^{2}+a^{2}x^{2}-x^{2}=0
Subtract x^{2} from both sides.
2ax^{2}+a^{2}x^{2}=0
Combine x^{2} and -x^{2} to get 0.
\left(2a+a^{2}\right)x^{2}=0
Combine all terms containing x.
\left(a^{2}+2a\right)x^{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}}}{2\left(a^{2}+2a\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2a+a^{2} for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2\left(a^{2}+2a\right)}
Take the square root of 0^{2}.
x=\frac{0}{2a\left(a+2\right)}
Multiply 2 times 2a+a^{2}.
x=0
Divide 0 by 2a\left(2+a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}