Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{4Bx+3x+B}{x-4}\text{, }&x\neq 4\\A\in \mathrm{C}\text{, }&B=-\frac{12}{17}\text{ and }x=4\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=-\frac{4A+3x-Ax}{4x+1}\text{, }&x\neq -\frac{1}{4}\\B\in \mathrm{C}\text{, }&A=\frac{3}{17}\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{4Bx+3x+B}{x-4}\text{, }&x\neq 4\\A\in \mathrm{R}\text{, }&B=-\frac{12}{17}\text{ and }x=4\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{4A+3x-Ax}{4x+1}\text{, }&x\neq -\frac{1}{4}\\B\in \mathrm{R}\text{, }&A=\frac{3}{17}\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}-3x+Ax-3A-A=x^{2}+4Bx+B
Subtract A from both sides.
x^{2}-3x+Ax-4A=x^{2}+4Bx+B
Combine -3A and -A to get -4A.
-3x+Ax-4A=x^{2}+4Bx+B-x^{2}
Subtract x^{2} from both sides.
-3x+Ax-4A=4Bx+B
Combine x^{2} and -x^{2} to get 0.
Ax-4A=4Bx+B+3x
Add 3x to both sides.
\left(x-4\right)A=4Bx+B+3x
Combine all terms containing A.
\left(x-4\right)A=4Bx+3x+B
The equation is in standard form.
\frac{\left(x-4\right)A}{x-4}=\frac{4Bx+3x+B}{x-4}
Divide both sides by x-4.
A=\frac{4Bx+3x+B}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}+4Bx+A+B=x^{2}-3x+Ax-3A
Swap sides so that all variable terms are on the left hand side.
4Bx+A+B=x^{2}-3x+Ax-3A-x^{2}
Subtract x^{2} from both sides.
4Bx+A+B=-3x+Ax-3A
Combine x^{2} and -x^{2} to get 0.
4Bx+B=-3x+Ax-3A-A
Subtract A from both sides.
4Bx+B=-3x+Ax-4A
Combine -3A and -A to get -4A.
\left(4x+1\right)B=-3x+Ax-4A
Combine all terms containing B.
\left(4x+1\right)B=Ax-3x-4A
The equation is in standard form.
\frac{\left(4x+1\right)B}{4x+1}=\frac{Ax-3x-4A}{4x+1}
Divide both sides by 4x+1.
B=\frac{Ax-3x-4A}{4x+1}
Dividing by 4x+1 undoes the multiplication by 4x+1.
x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}-3x+Ax-3A-A=x^{2}+4Bx+B
Subtract A from both sides.
x^{2}-3x+Ax-4A=x^{2}+4Bx+B
Combine -3A and -A to get -4A.
-3x+Ax-4A=x^{2}+4Bx+B-x^{2}
Subtract x^{2} from both sides.
-3x+Ax-4A=4Bx+B
Combine x^{2} and -x^{2} to get 0.
Ax-4A=4Bx+B+3x
Add 3x to both sides.
\left(x-4\right)A=4Bx+B+3x
Combine all terms containing A.
\left(x-4\right)A=4Bx+3x+B
The equation is in standard form.
\frac{\left(x-4\right)A}{x-4}=\frac{4Bx+3x+B}{x-4}
Divide both sides by x-4.
A=\frac{4Bx+3x+B}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}+4Bx+A+B=x^{2}-3x+Ax-3A
Swap sides so that all variable terms are on the left hand side.
4Bx+A+B=x^{2}-3x+Ax-3A-x^{2}
Subtract x^{2} from both sides.
4Bx+A+B=-3x+Ax-3A
Combine x^{2} and -x^{2} to get 0.
4Bx+B=-3x+Ax-3A-A
Subtract A from both sides.
4Bx+B=-3x+Ax-4A
Combine -3A and -A to get -4A.
\left(4x+1\right)B=-3x+Ax-4A
Combine all terms containing B.
\left(4x+1\right)B=Ax-3x-4A
The equation is in standard form.
\frac{\left(4x+1\right)B}{4x+1}=\frac{Ax-3x-4A}{4x+1}
Divide both sides by 4x+1.
B=\frac{Ax-3x-4A}{4x+1}
Dividing by 4x+1 undoes the multiplication by 4x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}