Skip to main content
Solve for A (complex solution)
Tick mark Image
Solve for B (complex solution)
Tick mark Image
Solve for A
Tick mark Image
Solve for B
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}-3x+Ax-3A-A=x^{2}+4Bx+B
Subtract A from both sides.
x^{2}-3x+Ax-4A=x^{2}+4Bx+B
Combine -3A and -A to get -4A.
-3x+Ax-4A=x^{2}+4Bx+B-x^{2}
Subtract x^{2} from both sides.
-3x+Ax-4A=4Bx+B
Combine x^{2} and -x^{2} to get 0.
Ax-4A=4Bx+B+3x
Add 3x to both sides.
\left(x-4\right)A=4Bx+B+3x
Combine all terms containing A.
\left(x-4\right)A=4Bx+3x+B
The equation is in standard form.
\frac{\left(x-4\right)A}{x-4}=\frac{4Bx+3x+B}{x-4}
Divide both sides by x-4.
A=\frac{4Bx+3x+B}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}+4Bx+A+B=x^{2}-3x+Ax-3A
Swap sides so that all variable terms are on the left hand side.
4Bx+A+B=x^{2}-3x+Ax-3A-x^{2}
Subtract x^{2} from both sides.
4Bx+A+B=-3x+Ax-3A
Combine x^{2} and -x^{2} to get 0.
4Bx+B=-3x+Ax-3A-A
Subtract A from both sides.
4Bx+B=-3x+Ax-4A
Combine -3A and -A to get -4A.
\left(4x+1\right)B=-3x+Ax-4A
Combine all terms containing B.
\left(4x+1\right)B=Ax-3x-4A
The equation is in standard form.
\frac{\left(4x+1\right)B}{4x+1}=\frac{Ax-3x-4A}{4x+1}
Divide both sides by 4x+1.
B=\frac{Ax-3x-4A}{4x+1}
Dividing by 4x+1 undoes the multiplication by 4x+1.
x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}-3x+Ax-3A-A=x^{2}+4Bx+B
Subtract A from both sides.
x^{2}-3x+Ax-4A=x^{2}+4Bx+B
Combine -3A and -A to get -4A.
-3x+Ax-4A=x^{2}+4Bx+B-x^{2}
Subtract x^{2} from both sides.
-3x+Ax-4A=4Bx+B
Combine x^{2} and -x^{2} to get 0.
Ax-4A=4Bx+B+3x
Add 3x to both sides.
\left(x-4\right)A=4Bx+B+3x
Combine all terms containing A.
\left(x-4\right)A=4Bx+3x+B
The equation is in standard form.
\frac{\left(x-4\right)A}{x-4}=\frac{4Bx+3x+B}{x-4}
Divide both sides by x-4.
A=\frac{4Bx+3x+B}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
x^{2}-3x+Ax-3A=x^{2}+4Bx+A+B
Use the distributive property to multiply x+A by x-3.
x^{2}+4Bx+A+B=x^{2}-3x+Ax-3A
Swap sides so that all variable terms are on the left hand side.
4Bx+A+B=x^{2}-3x+Ax-3A-x^{2}
Subtract x^{2} from both sides.
4Bx+A+B=-3x+Ax-3A
Combine x^{2} and -x^{2} to get 0.
4Bx+B=-3x+Ax-3A-A
Subtract A from both sides.
4Bx+B=-3x+Ax-4A
Combine -3A and -A to get -4A.
\left(4x+1\right)B=-3x+Ax-4A
Combine all terms containing B.
\left(4x+1\right)B=Ax-3x-4A
The equation is in standard form.
\frac{\left(4x+1\right)B}{4x+1}=\frac{Ax-3x-4A}{4x+1}
Divide both sides by 4x+1.
B=\frac{Ax-3x-4A}{4x+1}
Dividing by 4x+1 undoes the multiplication by 4x+1.