Solve for h (complex solution)
\left\{\begin{matrix}h=-\frac{3x-k-7}{x+9}\text{, }&x\neq -9\\h\in \mathrm{C}\text{, }&k=-34\text{ and }x=-9\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=-\frac{3x-k-7}{x+9}\text{, }&x\neq -9\\h\in \mathrm{R}\text{, }&k=-34\text{ and }x=-9\end{matrix}\right.
Solve for k
k=hx+3x+9h-7
Graph
Share
Copied to clipboard
x^{2}+xh+9x+9h+2=\left(x+3\right)^{2}+k
Use the distributive property to multiply x+9 by x+h.
x^{2}+xh+9x+9h+2=x^{2}+6x+9+k
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
xh+9x+9h+2=x^{2}+6x+9+k-x^{2}
Subtract x^{2} from both sides.
xh+9x+9h+2=6x+9+k
Combine x^{2} and -x^{2} to get 0.
xh+9h+2=6x+9+k-9x
Subtract 9x from both sides.
xh+9h+2=-3x+9+k
Combine 6x and -9x to get -3x.
xh+9h=-3x+9+k-2
Subtract 2 from both sides.
xh+9h=-3x+7+k
Subtract 2 from 9 to get 7.
\left(x+9\right)h=-3x+7+k
Combine all terms containing h.
\left(x+9\right)h=7+k-3x
The equation is in standard form.
\frac{\left(x+9\right)h}{x+9}=\frac{7+k-3x}{x+9}
Divide both sides by x+9.
h=\frac{7+k-3x}{x+9}
Dividing by x+9 undoes the multiplication by x+9.
x^{2}+xh+9x+9h+2=\left(x+3\right)^{2}+k
Use the distributive property to multiply x+9 by x+h.
x^{2}+xh+9x+9h+2=x^{2}+6x+9+k
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
xh+9x+9h+2=x^{2}+6x+9+k-x^{2}
Subtract x^{2} from both sides.
xh+9x+9h+2=6x+9+k
Combine x^{2} and -x^{2} to get 0.
xh+9h+2=6x+9+k-9x
Subtract 9x from both sides.
xh+9h+2=-3x+9+k
Combine 6x and -9x to get -3x.
xh+9h=-3x+9+k-2
Subtract 2 from both sides.
xh+9h=-3x+7+k
Subtract 2 from 9 to get 7.
\left(x+9\right)h=-3x+7+k
Combine all terms containing h.
\left(x+9\right)h=7+k-3x
The equation is in standard form.
\frac{\left(x+9\right)h}{x+9}=\frac{7+k-3x}{x+9}
Divide both sides by x+9.
h=\frac{7+k-3x}{x+9}
Dividing by x+9 undoes the multiplication by x+9.
x^{2}+xh+9x+9h+2=\left(x+3\right)^{2}+k
Use the distributive property to multiply x+9 by x+h.
x^{2}+xh+9x+9h+2=x^{2}+6x+9+k
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+k=x^{2}+xh+9x+9h+2
Swap sides so that all variable terms are on the left hand side.
6x+9+k=x^{2}+xh+9x+9h+2-x^{2}
Subtract x^{2} from both sides.
6x+9+k=xh+9x+9h+2
Combine x^{2} and -x^{2} to get 0.
9+k=xh+9x+9h+2-6x
Subtract 6x from both sides.
9+k=xh+3x+9h+2
Combine 9x and -6x to get 3x.
k=xh+3x+9h+2-9
Subtract 9 from both sides.
k=xh+3x+9h-7
Subtract 9 from 2 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}