Solve for x
x=4\sqrt{7}-4\approx 6.583005244
x=-4\sqrt{7}-4\approx -14.583005244
Graph
Share
Copied to clipboard
x^{2}+16x+64+x^{2}=256
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
2x^{2}+16x+64=256
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+16x+64-256=0
Subtract 256 from both sides.
2x^{2}+16x-192=0
Subtract 256 from 64 to get -192.
x=\frac{-16±\sqrt{16^{2}-4\times 2\left(-192\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 16 for b, and -192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 2\left(-192\right)}}{2\times 2}
Square 16.
x=\frac{-16±\sqrt{256-8\left(-192\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-16±\sqrt{256+1536}}{2\times 2}
Multiply -8 times -192.
x=\frac{-16±\sqrt{1792}}{2\times 2}
Add 256 to 1536.
x=\frac{-16±16\sqrt{7}}{2\times 2}
Take the square root of 1792.
x=\frac{-16±16\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{16\sqrt{7}-16}{4}
Now solve the equation x=\frac{-16±16\sqrt{7}}{4} when ± is plus. Add -16 to 16\sqrt{7}.
x=4\sqrt{7}-4
Divide -16+16\sqrt{7} by 4.
x=\frac{-16\sqrt{7}-16}{4}
Now solve the equation x=\frac{-16±16\sqrt{7}}{4} when ± is minus. Subtract 16\sqrt{7} from -16.
x=-4\sqrt{7}-4
Divide -16-16\sqrt{7} by 4.
x=4\sqrt{7}-4 x=-4\sqrt{7}-4
The equation is now solved.
x^{2}+16x+64+x^{2}=256
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
2x^{2}+16x+64=256
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+16x=256-64
Subtract 64 from both sides.
2x^{2}+16x=192
Subtract 64 from 256 to get 192.
\frac{2x^{2}+16x}{2}=\frac{192}{2}
Divide both sides by 2.
x^{2}+\frac{16}{2}x=\frac{192}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+8x=\frac{192}{2}
Divide 16 by 2.
x^{2}+8x=96
Divide 192 by 2.
x^{2}+8x+4^{2}=96+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=96+16
Square 4.
x^{2}+8x+16=112
Add 96 to 16.
\left(x+4\right)^{2}=112
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{112}
Take the square root of both sides of the equation.
x+4=4\sqrt{7} x+4=-4\sqrt{7}
Simplify.
x=4\sqrt{7}-4 x=-4\sqrt{7}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}