Solve for x
x=3\sqrt{2}-2\approx 2.242640687
x=-3\sqrt{2}-2\approx -6.242640687
Graph
Share
Copied to clipboard
x^{2}+4x-21=-7
Use the distributive property to multiply x+7 by x-3 and combine like terms.
x^{2}+4x-21+7=0
Add 7 to both sides.
x^{2}+4x-14=0
Add -21 and 7 to get -14.
x=\frac{-4±\sqrt{4^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-14\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+56}}{2}
Multiply -4 times -14.
x=\frac{-4±\sqrt{72}}{2}
Add 16 to 56.
x=\frac{-4±6\sqrt{2}}{2}
Take the square root of 72.
x=\frac{6\sqrt{2}-4}{2}
Now solve the equation x=\frac{-4±6\sqrt{2}}{2} when ± is plus. Add -4 to 6\sqrt{2}.
x=3\sqrt{2}-2
Divide -4+6\sqrt{2} by 2.
x=\frac{-6\sqrt{2}-4}{2}
Now solve the equation x=\frac{-4±6\sqrt{2}}{2} when ± is minus. Subtract 6\sqrt{2} from -4.
x=-3\sqrt{2}-2
Divide -4-6\sqrt{2} by 2.
x=3\sqrt{2}-2 x=-3\sqrt{2}-2
The equation is now solved.
x^{2}+4x-21=-7
Use the distributive property to multiply x+7 by x-3 and combine like terms.
x^{2}+4x=-7+21
Add 21 to both sides.
x^{2}+4x=14
Add -7 and 21 to get 14.
x^{2}+4x+2^{2}=14+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=14+4
Square 2.
x^{2}+4x+4=18
Add 14 to 4.
\left(x+2\right)^{2}=18
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{18}
Take the square root of both sides of the equation.
x+2=3\sqrt{2} x+2=-3\sqrt{2}
Simplify.
x=3\sqrt{2}-2 x=-3\sqrt{2}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}