( x + 7 ) \cdot ( 3 x + 0,5 ) = 7 x \cdot ( x + 3 )
Solve for x
x=-0,875
x=1
Graph
Share
Copied to clipboard
3x^{2}+21,5x+3,5=7x\left(x+3\right)
Use the distributive property to multiply x+7 by 3x+0,5 and combine like terms.
3x^{2}+21,5x+3,5=7x^{2}+21x
Use the distributive property to multiply 7x by x+3.
3x^{2}+21,5x+3,5-7x^{2}=21x
Subtract 7x^{2} from both sides.
-4x^{2}+21,5x+3,5=21x
Combine 3x^{2} and -7x^{2} to get -4x^{2}.
-4x^{2}+21,5x+3,5-21x=0
Subtract 21x from both sides.
-4x^{2}+0,5x+3,5=0
Combine 21,5x and -21x to get 0,5x.
x=\frac{-0,5±\sqrt{0,5^{2}-4\left(-4\right)\times 3,5}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0,5 for b, and 3,5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0,5±\sqrt{0,25-4\left(-4\right)\times 3,5}}{2\left(-4\right)}
Square 0,5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0,5±\sqrt{0,25+16\times 3,5}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-0,5±\sqrt{0,25+56}}{2\left(-4\right)}
Multiply 16 times 3,5.
x=\frac{-0,5±\sqrt{56,25}}{2\left(-4\right)}
Add 0,25 to 56.
x=\frac{-0,5±\frac{15}{2}}{2\left(-4\right)}
Take the square root of 56,25.
x=\frac{-0,5±\frac{15}{2}}{-8}
Multiply 2 times -4.
x=\frac{7}{-8}
Now solve the equation x=\frac{-0,5±\frac{15}{2}}{-8} when ± is plus. Add -0,5 to \frac{15}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{7}{8}
Divide 7 by -8.
x=-\frac{8}{-8}
Now solve the equation x=\frac{-0,5±\frac{15}{2}}{-8} when ± is minus. Subtract \frac{15}{2} from -0,5 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide -8 by -8.
x=-\frac{7}{8} x=1
The equation is now solved.
3x^{2}+21,5x+3,5=7x\left(x+3\right)
Use the distributive property to multiply x+7 by 3x+0,5 and combine like terms.
3x^{2}+21,5x+3,5=7x^{2}+21x
Use the distributive property to multiply 7x by x+3.
3x^{2}+21,5x+3,5-7x^{2}=21x
Subtract 7x^{2} from both sides.
-4x^{2}+21,5x+3,5=21x
Combine 3x^{2} and -7x^{2} to get -4x^{2}.
-4x^{2}+21,5x+3,5-21x=0
Subtract 21x from both sides.
-4x^{2}+0,5x+3,5=0
Combine 21,5x and -21x to get 0,5x.
-4x^{2}+0,5x=-3,5
Subtract 3,5 from both sides. Anything subtracted from zero gives its negation.
\frac{-4x^{2}+0,5x}{-4}=-\frac{3,5}{-4}
Divide both sides by -4.
x^{2}+\frac{0,5}{-4}x=-\frac{3,5}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-0,125x=-\frac{3,5}{-4}
Divide 0,5 by -4.
x^{2}-0,125x=0,875
Divide -3,5 by -4.
x^{2}-0,125x+\left(-0,0625\right)^{2}=0,875+\left(-0,0625\right)^{2}
Divide -0,125, the coefficient of the x term, by 2 to get -0,0625. Then add the square of -0,0625 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0,125x+0,00390625=0,875+0,00390625
Square -0,0625 by squaring both the numerator and the denominator of the fraction.
x^{2}-0,125x+0,00390625=0,87890625
Add 0,875 to 0,00390625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0,0625\right)^{2}=0,87890625
Factor x^{2}-0,125x+0,00390625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0,0625\right)^{2}}=\sqrt{0,87890625}
Take the square root of both sides of the equation.
x-0,0625=\frac{15}{16} x-0,0625=-\frac{15}{16}
Simplify.
x=1 x=-\frac{7}{8}
Add 0,0625 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}