Solve for x
x=2\sqrt{6}-4\approx 0.898979486
x=-2\sqrt{6}-4\approx -8.898979486
Graph
Share
Copied to clipboard
-2x+6+2=\left(x+6\right)x
Combine x and -3x to get -2x.
-2x+8=\left(x+6\right)x
Add 6 and 2 to get 8.
-2x+8=x^{2}+6x
Use the distributive property to multiply x+6 by x.
-2x+8-x^{2}=6x
Subtract x^{2} from both sides.
-2x+8-x^{2}-6x=0
Subtract 6x from both sides.
-8x+8-x^{2}=0
Combine -2x and -6x to get -8x.
-x^{2}-8x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -8 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-8\right)±\sqrt{64+32}}{2\left(-1\right)}
Multiply 4 times 8.
x=\frac{-\left(-8\right)±\sqrt{96}}{2\left(-1\right)}
Add 64 to 32.
x=\frac{-\left(-8\right)±4\sqrt{6}}{2\left(-1\right)}
Take the square root of 96.
x=\frac{8±4\sqrt{6}}{2\left(-1\right)}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{6}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{6}+8}{-2}
Now solve the equation x=\frac{8±4\sqrt{6}}{-2} when ± is plus. Add 8 to 4\sqrt{6}.
x=-2\sqrt{6}-4
Divide 8+4\sqrt{6} by -2.
x=\frac{8-4\sqrt{6}}{-2}
Now solve the equation x=\frac{8±4\sqrt{6}}{-2} when ± is minus. Subtract 4\sqrt{6} from 8.
x=2\sqrt{6}-4
Divide 8-4\sqrt{6} by -2.
x=-2\sqrt{6}-4 x=2\sqrt{6}-4
The equation is now solved.
-2x+6+2=\left(x+6\right)x
Combine x and -3x to get -2x.
-2x+8=\left(x+6\right)x
Add 6 and 2 to get 8.
-2x+8=x^{2}+6x
Use the distributive property to multiply x+6 by x.
-2x+8-x^{2}=6x
Subtract x^{2} from both sides.
-2x+8-x^{2}-6x=0
Subtract 6x from both sides.
-8x+8-x^{2}=0
Combine -2x and -6x to get -8x.
-8x-x^{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-8x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-8x}{-1}=-\frac{8}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{8}{-1}\right)x=-\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+8x=-\frac{8}{-1}
Divide -8 by -1.
x^{2}+8x=8
Divide -8 by -1.
x^{2}+8x+4^{2}=8+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=8+16
Square 4.
x^{2}+8x+16=24
Add 8 to 16.
\left(x+4\right)^{2}=24
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
x+4=2\sqrt{6} x+4=-2\sqrt{6}
Simplify.
x=2\sqrt{6}-4 x=-2\sqrt{6}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}