Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+12x+36-5x=4x^{2}+7x-12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+7x+36=4x^{2}+7x-12
Combine 12x and -5x to get 7x.
x^{2}+7x+36-4x^{2}=7x-12
Subtract 4x^{2} from both sides.
-3x^{2}+7x+36=7x-12
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+7x+36-7x=-12
Subtract 7x from both sides.
-3x^{2}+36=-12
Combine 7x and -7x to get 0.
-3x^{2}=-12-36
Subtract 36 from both sides.
-3x^{2}=-48
Subtract 36 from -12 to get -48.
x^{2}=\frac{-48}{-3}
Divide both sides by -3.
x^{2}=16
Divide -48 by -3 to get 16.
x=4 x=-4
Take the square root of both sides of the equation.
x^{2}+12x+36-5x=4x^{2}+7x-12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+7x+36=4x^{2}+7x-12
Combine 12x and -5x to get 7x.
x^{2}+7x+36-4x^{2}=7x-12
Subtract 4x^{2} from both sides.
-3x^{2}+7x+36=7x-12
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+7x+36-7x=-12
Subtract 7x from both sides.
-3x^{2}+36=-12
Combine 7x and -7x to get 0.
-3x^{2}+36+12=0
Add 12 to both sides.
-3x^{2}+48=0
Add 36 and 12 to get 48.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 48}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 48}}{2\left(-3\right)}
Square 0.
x=\frac{0±\sqrt{12\times 48}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{0±\sqrt{576}}{2\left(-3\right)}
Multiply 12 times 48.
x=\frac{0±24}{2\left(-3\right)}
Take the square root of 576.
x=\frac{0±24}{-6}
Multiply 2 times -3.
x=-4
Now solve the equation x=\frac{0±24}{-6} when ± is plus. Divide 24 by -6.
x=4
Now solve the equation x=\frac{0±24}{-6} when ± is minus. Divide -24 by -6.
x=-4 x=4
The equation is now solved.