Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{Bx+5x+70}{x+5}\text{, }&x\neq -5\\A\in \mathrm{C}\text{, }&x=-5\text{ and }B=9\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=\frac{Ax-5x+5A-70}{x}\text{, }&x\neq 0\\B\in \mathrm{C}\text{, }&A=14\text{ and }x=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{Bx+5x+70}{x+5}\text{, }&x\neq -5\\A\in \mathrm{R}\text{, }&x=-5\text{ and }B=9\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=\frac{Ax-5x+5A-70}{x}\text{, }&x\neq 0\\B\in \mathrm{R}\text{, }&A=14\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-xA+5x-5A=x^{2}-Bx-70
Use the distributive property to multiply x+5 by x-A.
-xA+5x-5A=x^{2}-Bx-70-x^{2}
Subtract x^{2} from both sides.
-xA+5x-5A=-Bx-70
Combine x^{2} and -x^{2} to get 0.
-xA-5A=-Bx-70-5x
Subtract 5x from both sides.
\left(-x-5\right)A=-Bx-70-5x
Combine all terms containing A.
\left(-x-5\right)A=-Bx-5x-70
The equation is in standard form.
\frac{\left(-x-5\right)A}{-x-5}=\frac{-Bx-5x-70}{-x-5}
Divide both sides by -x-5.
A=\frac{-Bx-5x-70}{-x-5}
Dividing by -x-5 undoes the multiplication by -x-5.
A=\frac{Bx+5x+70}{x+5}
Divide -5x-70-Bx by -x-5.
x^{2}-xA+5x-5A=x^{2}-Bx-70
Use the distributive property to multiply x+5 by x-A.
x^{2}-Bx-70=x^{2}-xA+5x-5A
Swap sides so that all variable terms are on the left hand side.
-Bx-70=x^{2}-xA+5x-5A-x^{2}
Subtract x^{2} from both sides.
-Bx-70=-xA+5x-5A
Combine x^{2} and -x^{2} to get 0.
-Bx=-xA+5x-5A+70
Add 70 to both sides.
\left(-x\right)B=70-5A+5x-Ax
The equation is in standard form.
\frac{\left(-x\right)B}{-x}=\frac{70-5A+5x-Ax}{-x}
Divide both sides by -x.
B=\frac{70-5A+5x-Ax}{-x}
Dividing by -x undoes the multiplication by -x.
B=A+\frac{5A-70}{x}-5
Divide -xA+5x-5A+70 by -x.
x^{2}-xA+5x-5A=x^{2}-Bx-70
Use the distributive property to multiply x+5 by x-A.
-xA+5x-5A=x^{2}-Bx-70-x^{2}
Subtract x^{2} from both sides.
-xA+5x-5A=-Bx-70
Combine x^{2} and -x^{2} to get 0.
-xA-5A=-Bx-70-5x
Subtract 5x from both sides.
\left(-x-5\right)A=-Bx-70-5x
Combine all terms containing A.
\left(-x-5\right)A=-Bx-5x-70
The equation is in standard form.
\frac{\left(-x-5\right)A}{-x-5}=\frac{-Bx-5x-70}{-x-5}
Divide both sides by -x-5.
A=\frac{-Bx-5x-70}{-x-5}
Dividing by -x-5 undoes the multiplication by -x-5.
A=\frac{Bx+5x+70}{x+5}
Divide -Bx-70-5x by -x-5.
x^{2}-xA+5x-5A=x^{2}-Bx-70
Use the distributive property to multiply x+5 by x-A.
x^{2}-Bx-70=x^{2}-xA+5x-5A
Swap sides so that all variable terms are on the left hand side.
-Bx-70=x^{2}-xA+5x-5A-x^{2}
Subtract x^{2} from both sides.
-Bx-70=-xA+5x-5A
Combine x^{2} and -x^{2} to get 0.
-Bx=-xA+5x-5A+70
Add 70 to both sides.
\left(-x\right)B=70-5A+5x-Ax
The equation is in standard form.
\frac{\left(-x\right)B}{-x}=\frac{70-5A+5x-Ax}{-x}
Divide both sides by -x.
B=\frac{70-5A+5x-Ax}{-x}
Dividing by -x undoes the multiplication by -x.
B=A+\frac{5A-70}{x}-5
Divide -xA+5x-5A+70 by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}