Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3x-40=2x\left(x+5\right)+3x\left(x-8\right)
Use the distributive property to multiply x+5 by x-8 and combine like terms.
x^{2}-3x-40=2x^{2}+10x+3x\left(x-8\right)
Use the distributive property to multiply 2x by x+5.
x^{2}-3x-40=2x^{2}+10x+3x^{2}-24x
Use the distributive property to multiply 3x by x-8.
x^{2}-3x-40=5x^{2}+10x-24x
Combine 2x^{2} and 3x^{2} to get 5x^{2}.
x^{2}-3x-40=5x^{2}-14x
Combine 10x and -24x to get -14x.
x^{2}-3x-40-5x^{2}=-14x
Subtract 5x^{2} from both sides.
-4x^{2}-3x-40=-14x
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}-3x-40+14x=0
Add 14x to both sides.
-4x^{2}+11x-40=0
Combine -3x and 14x to get 11x.
x=\frac{-11±\sqrt{11^{2}-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 11 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-4\right)\left(-40\right)}}{2\left(-4\right)}
Square 11.
x=\frac{-11±\sqrt{121+16\left(-40\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-11±\sqrt{121-640}}{2\left(-4\right)}
Multiply 16 times -40.
x=\frac{-11±\sqrt{-519}}{2\left(-4\right)}
Add 121 to -640.
x=\frac{-11±\sqrt{519}i}{2\left(-4\right)}
Take the square root of -519.
x=\frac{-11±\sqrt{519}i}{-8}
Multiply 2 times -4.
x=\frac{-11+\sqrt{519}i}{-8}
Now solve the equation x=\frac{-11±\sqrt{519}i}{-8} when ± is plus. Add -11 to i\sqrt{519}.
x=\frac{-\sqrt{519}i+11}{8}
Divide -11+i\sqrt{519} by -8.
x=\frac{-\sqrt{519}i-11}{-8}
Now solve the equation x=\frac{-11±\sqrt{519}i}{-8} when ± is minus. Subtract i\sqrt{519} from -11.
x=\frac{11+\sqrt{519}i}{8}
Divide -11-i\sqrt{519} by -8.
x=\frac{-\sqrt{519}i+11}{8} x=\frac{11+\sqrt{519}i}{8}
The equation is now solved.
x^{2}-3x-40=2x\left(x+5\right)+3x\left(x-8\right)
Use the distributive property to multiply x+5 by x-8 and combine like terms.
x^{2}-3x-40=2x^{2}+10x+3x\left(x-8\right)
Use the distributive property to multiply 2x by x+5.
x^{2}-3x-40=2x^{2}+10x+3x^{2}-24x
Use the distributive property to multiply 3x by x-8.
x^{2}-3x-40=5x^{2}+10x-24x
Combine 2x^{2} and 3x^{2} to get 5x^{2}.
x^{2}-3x-40=5x^{2}-14x
Combine 10x and -24x to get -14x.
x^{2}-3x-40-5x^{2}=-14x
Subtract 5x^{2} from both sides.
-4x^{2}-3x-40=-14x
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}-3x-40+14x=0
Add 14x to both sides.
-4x^{2}+11x-40=0
Combine -3x and 14x to get 11x.
-4x^{2}+11x=40
Add 40 to both sides. Anything plus zero gives itself.
\frac{-4x^{2}+11x}{-4}=\frac{40}{-4}
Divide both sides by -4.
x^{2}+\frac{11}{-4}x=\frac{40}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{11}{4}x=\frac{40}{-4}
Divide 11 by -4.
x^{2}-\frac{11}{4}x=-10
Divide 40 by -4.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=-10+\left(-\frac{11}{8}\right)^{2}
Divide -\frac{11}{4}, the coefficient of the x term, by 2 to get -\frac{11}{8}. Then add the square of -\frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{4}x+\frac{121}{64}=-10+\frac{121}{64}
Square -\frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{4}x+\frac{121}{64}=-\frac{519}{64}
Add -10 to \frac{121}{64}.
\left(x-\frac{11}{8}\right)^{2}=-\frac{519}{64}
Factor x^{2}-\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{-\frac{519}{64}}
Take the square root of both sides of the equation.
x-\frac{11}{8}=\frac{\sqrt{519}i}{8} x-\frac{11}{8}=-\frac{\sqrt{519}i}{8}
Simplify.
x=\frac{11+\sqrt{519}i}{8} x=\frac{-\sqrt{519}i+11}{8}
Add \frac{11}{8} to both sides of the equation.