Solve for x
x>\frac{43}{28}
Graph
Share
Copied to clipboard
x^{2}+7x+10-3\left(x-4\right)^{2}>x\left(3-2x\right)+5
Use the distributive property to multiply x+5 by x+2 and combine like terms.
x^{2}+7x+10-3\left(x^{2}-8x+16\right)>x\left(3-2x\right)+5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}+7x+10-3x^{2}+24x-48>x\left(3-2x\right)+5
Use the distributive property to multiply -3 by x^{2}-8x+16.
-2x^{2}+7x+10+24x-48>x\left(3-2x\right)+5
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+31x+10-48>x\left(3-2x\right)+5
Combine 7x and 24x to get 31x.
-2x^{2}+31x-38>x\left(3-2x\right)+5
Subtract 48 from 10 to get -38.
-2x^{2}+31x-38>3x-2x^{2}+5
Use the distributive property to multiply x by 3-2x.
-2x^{2}+31x-38-3x>-2x^{2}+5
Subtract 3x from both sides.
-2x^{2}+28x-38>-2x^{2}+5
Combine 31x and -3x to get 28x.
-2x^{2}+28x-38+2x^{2}>5
Add 2x^{2} to both sides.
28x-38>5
Combine -2x^{2} and 2x^{2} to get 0.
28x>5+38
Add 38 to both sides.
28x>43
Add 5 and 38 to get 43.
x>\frac{43}{28}
Divide both sides by 28. Since 28 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}