Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\sqrt{x-2}+5\sqrt{x-2}=0
Use the distributive property to multiply x+5 by \sqrt{x-2}.
x\sqrt{x-2}=-5\sqrt{x-2}
Subtract 5\sqrt{x-2} from both sides of the equation.
\left(x\sqrt{x-2}\right)^{2}=\left(-5\sqrt{x-2}\right)^{2}
Square both sides of the equation.
x^{2}\left(\sqrt{x-2}\right)^{2}=\left(-5\sqrt{x-2}\right)^{2}
Expand \left(x\sqrt{x-2}\right)^{2}.
x^{2}\left(x-2\right)=\left(-5\sqrt{x-2}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x^{3}-2x^{2}=\left(-5\sqrt{x-2}\right)^{2}
Use the distributive property to multiply x^{2} by x-2.
x^{3}-2x^{2}=\left(-5\right)^{2}\left(\sqrt{x-2}\right)^{2}
Expand \left(-5\sqrt{x-2}\right)^{2}.
x^{3}-2x^{2}=25\left(\sqrt{x-2}\right)^{2}
Calculate -5 to the power of 2 and get 25.
x^{3}-2x^{2}=25\left(x-2\right)
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x^{3}-2x^{2}=25x-50
Use the distributive property to multiply 25 by x-2.
x^{3}-2x^{2}-25x=-50
Subtract 25x from both sides.
x^{3}-2x^{2}-25x+50=0
Add 50 to both sides.
±50,±25,±10,±5,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 50 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-25=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-2x^{2}-25x+50 by x-2 to get x^{2}-25. Solve the equation where the result equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-25\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 0 for b, and -25 for c in the quadratic formula.
x=\frac{0±10}{2}
Do the calculations.
x=-5 x=5
Solve the equation x^{2}-25=0 when ± is plus and when ± is minus.
x=2 x=-5 x=5
List all found solutions.
\left(2+5\right)\sqrt{2-2}=0
Substitute 2 for x in the equation \left(x+5\right)\sqrt{x-2}=0.
0=0
Simplify. The value x=2 satisfies the equation.
\left(-5+5\right)\sqrt{-5-2}=0
Substitute -5 for x in the equation \left(x+5\right)\sqrt{x-2}=0.
0=0
Simplify. The value x=-5 satisfies the equation.
\left(5+5\right)\sqrt{5-2}=0
Substitute 5 for x in the equation \left(x+5\right)\sqrt{x-2}=0.
10\times 3^{\frac{1}{2}}=0
Simplify. The value x=5 does not satisfy the equation.
x=2 x=-5
List all solutions of \sqrt{x-2}x=-5\sqrt{x-2}.
x\sqrt{x-2}+5\sqrt{x-2}=0
Use the distributive property to multiply x+5 by \sqrt{x-2}.
x\sqrt{x-2}=-5\sqrt{x-2}
Subtract 5\sqrt{x-2} from both sides of the equation.
\left(x\sqrt{x-2}\right)^{2}=\left(-5\sqrt{x-2}\right)^{2}
Square both sides of the equation.
x^{2}\left(\sqrt{x-2}\right)^{2}=\left(-5\sqrt{x-2}\right)^{2}
Expand \left(x\sqrt{x-2}\right)^{2}.
x^{2}\left(x-2\right)=\left(-5\sqrt{x-2}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x^{3}-2x^{2}=\left(-5\sqrt{x-2}\right)^{2}
Use the distributive property to multiply x^{2} by x-2.
x^{3}-2x^{2}=\left(-5\right)^{2}\left(\sqrt{x-2}\right)^{2}
Expand \left(-5\sqrt{x-2}\right)^{2}.
x^{3}-2x^{2}=25\left(\sqrt{x-2}\right)^{2}
Calculate -5 to the power of 2 and get 25.
x^{3}-2x^{2}=25\left(x-2\right)
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x^{3}-2x^{2}=25x-50
Use the distributive property to multiply 25 by x-2.
x^{3}-2x^{2}-25x=-50
Subtract 25x from both sides.
x^{3}-2x^{2}-25x+50=0
Add 50 to both sides.
±50,±25,±10,±5,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 50 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-25=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-2x^{2}-25x+50 by x-2 to get x^{2}-25. Solve the equation where the result equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-25\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 0 for b, and -25 for c in the quadratic formula.
x=\frac{0±10}{2}
Do the calculations.
x=-5 x=5
Solve the equation x^{2}-25=0 when ± is plus and when ± is minus.
x=2 x=-5 x=5
List all found solutions.
\left(2+5\right)\sqrt{2-2}=0
Substitute 2 for x in the equation \left(x+5\right)\sqrt{x-2}=0.
0=0
Simplify. The value x=2 satisfies the equation.
\left(-5+5\right)\sqrt{-5-2}=0
Substitute -5 for x in the equation \left(x+5\right)\sqrt{x-2}=0. The expression \sqrt{-5-2} is undefined because the radicand cannot be negative.
\left(5+5\right)\sqrt{5-2}=0
Substitute 5 for x in the equation \left(x+5\right)\sqrt{x-2}=0.
10\times 3^{\frac{1}{2}}=0
Simplify. The value x=5 does not satisfy the equation.
x=2
Equation \sqrt{x-2}x=-5\sqrt{x-2} has a unique solution.