Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
x^{3}+15x^{2}+75x+125-x-5=\left(x+4\right)\left(x+5\right)\left(x+6\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+5\right)^{3}.
x^{3}+15x^{2}+74x+125-5=\left(x+4\right)\left(x+5\right)\left(x+6\right)
Combine 75x and -x to get 74x.
x^{3}+15x^{2}+74x+120=\left(x+4\right)\left(x+5\right)\left(x+6\right)
Subtract 5 from 125 to get 120.
x^{3}+15x^{2}+74x+120=\left(x^{2}+9x+20\right)\left(x+6\right)
Use the distributive property to multiply x+4 by x+5 and combine like terms.
x^{3}+15x^{2}+74x+120=x^{3}+15x^{2}+74x+120
Use the distributive property to multiply x^{2}+9x+20 by x+6 and combine like terms.
x^{3}+15x^{2}+74x+120-x^{3}=15x^{2}+74x+120
Subtract x^{3} from both sides.
15x^{2}+74x+120=15x^{2}+74x+120
Combine x^{3} and -x^{3} to get 0.
15x^{2}+74x+120-15x^{2}=74x+120
Subtract 15x^{2} from both sides.
74x+120=74x+120
Combine 15x^{2} and -15x^{2} to get 0.
74x+120-74x=120
Subtract 74x from both sides.
120=120
Combine 74x and -74x to get 0.
\text{true}
Compare 120 and 120.
x\in \mathrm{C}
This is true for any x.
x^{3}+15x^{2}+75x+125-x-5=\left(x+4\right)\left(x+5\right)\left(x+6\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+5\right)^{3}.
x^{3}+15x^{2}+74x+125-5=\left(x+4\right)\left(x+5\right)\left(x+6\right)
Combine 75x and -x to get 74x.
x^{3}+15x^{2}+74x+120=\left(x+4\right)\left(x+5\right)\left(x+6\right)
Subtract 5 from 125 to get 120.
x^{3}+15x^{2}+74x+120=\left(x^{2}+9x+20\right)\left(x+6\right)
Use the distributive property to multiply x+4 by x+5 and combine like terms.
x^{3}+15x^{2}+74x+120=x^{3}+15x^{2}+74x+120
Use the distributive property to multiply x^{2}+9x+20 by x+6 and combine like terms.
x^{3}+15x^{2}+74x+120-x^{3}=15x^{2}+74x+120
Subtract x^{3} from both sides.
15x^{2}+74x+120=15x^{2}+74x+120
Combine x^{3} and -x^{3} to get 0.
15x^{2}+74x+120-15x^{2}=74x+120
Subtract 15x^{2} from both sides.
74x+120=74x+120
Combine 15x^{2} and -15x^{2} to get 0.
74x+120-74x=120
Subtract 74x from both sides.
120=120
Combine 74x and -74x to get 0.
\text{true}
Compare 120 and 120.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}