Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+10x+25-3\left(x+5\right)-10=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25-3x-15-10=0
Use the distributive property to multiply -3 by x+5.
x^{2}+7x+25-15-10=0
Combine 10x and -3x to get 7x.
x^{2}+7x+10-10=0
Subtract 15 from 25 to get 10.
x^{2}+7x=0
Subtract 10 from 10 to get 0.
x\left(x+7\right)=0
Factor out x.
x=0 x=-7
To find equation solutions, solve x=0 and x+7=0.
x^{2}+10x+25-3\left(x+5\right)-10=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25-3x-15-10=0
Use the distributive property to multiply -3 by x+5.
x^{2}+7x+25-15-10=0
Combine 10x and -3x to get 7x.
x^{2}+7x+10-10=0
Subtract 15 from 25 to get 10.
x^{2}+7x=0
Subtract 10 from 10 to get 0.
x=\frac{-7±\sqrt{7^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±7}{2}
Take the square root of 7^{2}.
x=\frac{0}{2}
Now solve the equation x=\frac{-7±7}{2} when ± is plus. Add -7 to 7.
x=0
Divide 0 by 2.
x=-\frac{14}{2}
Now solve the equation x=\frac{-7±7}{2} when ± is minus. Subtract 7 from -7.
x=-7
Divide -14 by 2.
x=0 x=-7
The equation is now solved.
x^{2}+10x+25-3\left(x+5\right)-10=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25-3x-15-10=0
Use the distributive property to multiply -3 by x+5.
x^{2}+7x+25-15-10=0
Combine 10x and -3x to get 7x.
x^{2}+7x+10-10=0
Subtract 15 from 25 to get 10.
x^{2}+7x=0
Subtract 10 from 10 to get 0.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{7}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{7}{2} x+\frac{7}{2}=-\frac{7}{2}
Simplify.
x=0 x=-7
Subtract \frac{7}{2} from both sides of the equation.