Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+86x+1849+\left(2x+34-8\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+43\right)^{2}.
x^{2}+86x+1849+\left(2x+26\right)^{2}=0
Subtract 8 from 34 to get 26.
x^{2}+86x+1849+4x^{2}+104x+676=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+26\right)^{2}.
5x^{2}+86x+1849+104x+676=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+190x+1849+676=0
Combine 86x and 104x to get 190x.
5x^{2}+190x+2525=0
Add 1849 and 676 to get 2525.
x=\frac{-190±\sqrt{190^{2}-4\times 5\times 2525}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 190 for b, and 2525 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-190±\sqrt{36100-4\times 5\times 2525}}{2\times 5}
Square 190.
x=\frac{-190±\sqrt{36100-20\times 2525}}{2\times 5}
Multiply -4 times 5.
x=\frac{-190±\sqrt{36100-50500}}{2\times 5}
Multiply -20 times 2525.
x=\frac{-190±\sqrt{-14400}}{2\times 5}
Add 36100 to -50500.
x=\frac{-190±120i}{2\times 5}
Take the square root of -14400.
x=\frac{-190±120i}{10}
Multiply 2 times 5.
x=\frac{-190+120i}{10}
Now solve the equation x=\frac{-190±120i}{10} when ± is plus. Add -190 to 120i.
x=-19+12i
Divide -190+120i by 10.
x=\frac{-190-120i}{10}
Now solve the equation x=\frac{-190±120i}{10} when ± is minus. Subtract 120i from -190.
x=-19-12i
Divide -190-120i by 10.
x=-19+12i x=-19-12i
The equation is now solved.
x^{2}+86x+1849+\left(2x+34-8\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+43\right)^{2}.
x^{2}+86x+1849+\left(2x+26\right)^{2}=0
Subtract 8 from 34 to get 26.
x^{2}+86x+1849+4x^{2}+104x+676=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+26\right)^{2}.
5x^{2}+86x+1849+104x+676=0
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+190x+1849+676=0
Combine 86x and 104x to get 190x.
5x^{2}+190x+2525=0
Add 1849 and 676 to get 2525.
5x^{2}+190x=-2525
Subtract 2525 from both sides. Anything subtracted from zero gives its negation.
\frac{5x^{2}+190x}{5}=-\frac{2525}{5}
Divide both sides by 5.
x^{2}+\frac{190}{5}x=-\frac{2525}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+38x=-\frac{2525}{5}
Divide 190 by 5.
x^{2}+38x=-505
Divide -2525 by 5.
x^{2}+38x+19^{2}=-505+19^{2}
Divide 38, the coefficient of the x term, by 2 to get 19. Then add the square of 19 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+38x+361=-505+361
Square 19.
x^{2}+38x+361=-144
Add -505 to 361.
\left(x+19\right)^{2}=-144
Factor x^{2}+38x+361. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+19\right)^{2}}=\sqrt{-144}
Take the square root of both sides of the equation.
x+19=12i x+19=-12i
Simplify.
x=-19+12i x=-19-12i
Subtract 19 from both sides of the equation.