Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{x+n-12}{x}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&x=0\text{ and }n=12\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{x+n-12}{x}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&x=0\text{ and }n=12\end{matrix}\right.
Solve for n
n=mx-x+12
Graph
Share
Copied to clipboard
x^{2}+x-12=x^{2}+mx-n
Use the distributive property to multiply x+4 by x-3 and combine like terms.
x^{2}+mx-n=x^{2}+x-12
Swap sides so that all variable terms are on the left hand side.
mx-n=x^{2}+x-12-x^{2}
Subtract x^{2} from both sides.
mx-n=x-12
Combine x^{2} and -x^{2} to get 0.
mx=x-12+n
Add n to both sides.
xm=x+n-12
The equation is in standard form.
\frac{xm}{x}=\frac{x+n-12}{x}
Divide both sides by x.
m=\frac{x+n-12}{x}
Dividing by x undoes the multiplication by x.
x^{2}+x-12=x^{2}+mx-n
Use the distributive property to multiply x+4 by x-3 and combine like terms.
x^{2}+mx-n=x^{2}+x-12
Swap sides so that all variable terms are on the left hand side.
mx-n=x^{2}+x-12-x^{2}
Subtract x^{2} from both sides.
mx-n=x-12
Combine x^{2} and -x^{2} to get 0.
mx=x-12+n
Add n to both sides.
xm=x+n-12
The equation is in standard form.
\frac{xm}{x}=\frac{x+n-12}{x}
Divide both sides by x.
m=\frac{x+n-12}{x}
Dividing by x undoes the multiplication by x.
x^{2}+x-12=x^{2}+mx-n
Use the distributive property to multiply x+4 by x-3 and combine like terms.
x^{2}+mx-n=x^{2}+x-12
Swap sides so that all variable terms are on the left hand side.
mx-n=x^{2}+x-12-x^{2}
Subtract x^{2} from both sides.
mx-n=x-12
Combine x^{2} and -x^{2} to get 0.
-n=x-12-mx
Subtract mx from both sides.
-n=-mx+x-12
The equation is in standard form.
\frac{-n}{-1}=\frac{-mx+x-12}{-1}
Divide both sides by -1.
n=\frac{-mx+x-12}{-1}
Dividing by -1 undoes the multiplication by -1.
n=mx-x+12
Divide x-12-mx by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}