Solve for x
x=\frac{2\sqrt{33}}{3}+2\approx 5.829708431
x=-\frac{2\sqrt{33}}{3}+2\approx -1.829708431
Graph
Share
Copied to clipboard
x^{2}+12x+32=4x^{2}
Use the distributive property to multiply x+4 by x+8 and combine like terms.
x^{2}+12x+32-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+12x+32=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\times 32}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 12 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-3\right)\times 32}}{2\left(-3\right)}
Square 12.
x=\frac{-12±\sqrt{144+12\times 32}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-12±\sqrt{144+384}}{2\left(-3\right)}
Multiply 12 times 32.
x=\frac{-12±\sqrt{528}}{2\left(-3\right)}
Add 144 to 384.
x=\frac{-12±4\sqrt{33}}{2\left(-3\right)}
Take the square root of 528.
x=\frac{-12±4\sqrt{33}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{33}-12}{-6}
Now solve the equation x=\frac{-12±4\sqrt{33}}{-6} when ± is plus. Add -12 to 4\sqrt{33}.
x=-\frac{2\sqrt{33}}{3}+2
Divide -12+4\sqrt{33} by -6.
x=\frac{-4\sqrt{33}-12}{-6}
Now solve the equation x=\frac{-12±4\sqrt{33}}{-6} when ± is minus. Subtract 4\sqrt{33} from -12.
x=\frac{2\sqrt{33}}{3}+2
Divide -12-4\sqrt{33} by -6.
x=-\frac{2\sqrt{33}}{3}+2 x=\frac{2\sqrt{33}}{3}+2
The equation is now solved.
x^{2}+12x+32=4x^{2}
Use the distributive property to multiply x+4 by x+8 and combine like terms.
x^{2}+12x+32-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+12x+32=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+12x=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
\frac{-3x^{2}+12x}{-3}=-\frac{32}{-3}
Divide both sides by -3.
x^{2}+\frac{12}{-3}x=-\frac{32}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-4x=-\frac{32}{-3}
Divide 12 by -3.
x^{2}-4x=\frac{32}{3}
Divide -32 by -3.
x^{2}-4x+\left(-2\right)^{2}=\frac{32}{3}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{32}{3}+4
Square -2.
x^{2}-4x+4=\frac{44}{3}
Add \frac{32}{3} to 4.
\left(x-2\right)^{2}=\frac{44}{3}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{44}{3}}
Take the square root of both sides of the equation.
x-2=\frac{2\sqrt{33}}{3} x-2=-\frac{2\sqrt{33}}{3}
Simplify.
x=\frac{2\sqrt{33}}{3}+2 x=-\frac{2\sqrt{33}}{3}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}