Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+4\right)^{2}=80
Multiply x+4 and x+4 to get \left(x+4\right)^{2}.
x^{2}+8x+16=80
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16-80=0
Subtract 80 from both sides.
x^{2}+8x-64=0
Subtract 80 from 16 to get -64.
x=\frac{-8±\sqrt{8^{2}-4\left(-64\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-64\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+256}}{2}
Multiply -4 times -64.
x=\frac{-8±\sqrt{320}}{2}
Add 64 to 256.
x=\frac{-8±8\sqrt{5}}{2}
Take the square root of 320.
x=\frac{8\sqrt{5}-8}{2}
Now solve the equation x=\frac{-8±8\sqrt{5}}{2} when ± is plus. Add -8 to 8\sqrt{5}.
x=4\sqrt{5}-4
Divide -8+8\sqrt{5} by 2.
x=\frac{-8\sqrt{5}-8}{2}
Now solve the equation x=\frac{-8±8\sqrt{5}}{2} when ± is minus. Subtract 8\sqrt{5} from -8.
x=-4\sqrt{5}-4
Divide -8-8\sqrt{5} by 2.
x=4\sqrt{5}-4 x=-4\sqrt{5}-4
The equation is now solved.
\left(x+4\right)^{2}=80
Multiply x+4 and x+4 to get \left(x+4\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{80}
Take the square root of both sides of the equation.
x+4=4\sqrt{5} x+4=-4\sqrt{5}
Simplify.
x=4\sqrt{5}-4 x=-4\sqrt{5}-4
Subtract 4 from both sides of the equation.