Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+4\right)^{2}=44
Multiply x+4 and x+4 to get \left(x+4\right)^{2}.
x^{2}+8x+16=44
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16-44=0
Subtract 44 from both sides.
x^{2}+8x-28=0
Subtract 44 from 16 to get -28.
x=\frac{-8±\sqrt{8^{2}-4\left(-28\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-28\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+112}}{2}
Multiply -4 times -28.
x=\frac{-8±\sqrt{176}}{2}
Add 64 to 112.
x=\frac{-8±4\sqrt{11}}{2}
Take the square root of 176.
x=\frac{4\sqrt{11}-8}{2}
Now solve the equation x=\frac{-8±4\sqrt{11}}{2} when ± is plus. Add -8 to 4\sqrt{11}.
x=2\sqrt{11}-4
Divide -8+4\sqrt{11} by 2.
x=\frac{-4\sqrt{11}-8}{2}
Now solve the equation x=\frac{-8±4\sqrt{11}}{2} when ± is minus. Subtract 4\sqrt{11} from -8.
x=-2\sqrt{11}-4
Divide -8-4\sqrt{11} by 2.
x=2\sqrt{11}-4 x=-2\sqrt{11}-4
The equation is now solved.
\left(x+4\right)^{2}=44
Multiply x+4 and x+4 to get \left(x+4\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{44}
Take the square root of both sides of the equation.
x+4=2\sqrt{11} x+4=-2\sqrt{11}
Simplify.
x=2\sqrt{11}-4 x=-2\sqrt{11}-4
Subtract 4 from both sides of the equation.