( x + 4 ) ( 2 x - 1 ) = ( - x - 7 ) ( 4 + x
Solve for x
x=-4
x=-2
Graph
Share
Copied to clipboard
2x^{2}+7x-4=\left(-x-7\right)\left(4+x\right)
Use the distributive property to multiply x+4 by 2x-1 and combine like terms.
2x^{2}+7x-4=4\left(-x\right)+\left(-x\right)x-28-7x
Use the distributive property to multiply -x-7 by 4+x.
2x^{2}+7x-4-4\left(-x\right)=\left(-x\right)x-28-7x
Subtract 4\left(-x\right) from both sides.
2x^{2}+7x-4-4\left(-x\right)-\left(-x\right)x=-28-7x
Subtract \left(-x\right)x from both sides.
2x^{2}+7x-4-4\left(-x\right)-\left(-x\right)x-\left(-28\right)=-7x
Subtract -28 from both sides.
2x^{2}+7x-4-4\left(-x\right)-\left(-x\right)x+28=-7x
The opposite of -28 is 28.
2x^{2}+7x-4-4\left(-x\right)-\left(-x\right)x+28+7x=0
Add 7x to both sides.
2x^{2}+7x-4-4\left(-1\right)x-\left(-xx\right)+28+7x=0
Multiply -1 and 4 to get -4.
2x^{2}+7x-4+4x-\left(-xx\right)+28+7x=0
Multiply -4 and -1 to get 4.
2x^{2}+11x-4-\left(-xx\right)+28+7x=0
Combine 7x and 4x to get 11x.
2x^{2}+11x-4-\left(-x^{2}\right)+28+7x=0
Multiply x and x to get x^{2}.
2x^{2}+11x-4+x^{2}+28+7x=0
Multiply -1 and -1 to get 1.
3x^{2}+11x-4+28+7x=0
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+11x+24+7x=0
Add -4 and 28 to get 24.
3x^{2}+18x+24=0
Combine 11x and 7x to get 18x.
x=\frac{-18±\sqrt{18^{2}-4\times 3\times 24}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 18 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 3\times 24}}{2\times 3}
Square 18.
x=\frac{-18±\sqrt{324-12\times 24}}{2\times 3}
Multiply -4 times 3.
x=\frac{-18±\sqrt{324-288}}{2\times 3}
Multiply -12 times 24.
x=\frac{-18±\sqrt{36}}{2\times 3}
Add 324 to -288.
x=\frac{-18±6}{2\times 3}
Take the square root of 36.
x=\frac{-18±6}{6}
Multiply 2 times 3.
x=-\frac{12}{6}
Now solve the equation x=\frac{-18±6}{6} when ± is plus. Add -18 to 6.
x=-2
Divide -12 by 6.
x=-\frac{24}{6}
Now solve the equation x=\frac{-18±6}{6} when ± is minus. Subtract 6 from -18.
x=-4
Divide -24 by 6.
x=-2 x=-4
The equation is now solved.
2x^{2}+7x-4=\left(-x-7\right)\left(4+x\right)
Use the distributive property to multiply x+4 by 2x-1 and combine like terms.
2x^{2}+7x-4=4\left(-x\right)+\left(-x\right)x-28-7x
Use the distributive property to multiply -x-7 by 4+x.
2x^{2}+7x-4-4\left(-x\right)=\left(-x\right)x-28-7x
Subtract 4\left(-x\right) from both sides.
2x^{2}+7x-4-4\left(-x\right)-\left(-x\right)x=-28-7x
Subtract \left(-x\right)x from both sides.
2x^{2}+7x-4-4\left(-x\right)-\left(-x\right)x+7x=-28
Add 7x to both sides.
2x^{2}+7x-4-4\left(-1\right)x-\left(-xx\right)+7x=-28
Multiply -1 and 4 to get -4.
2x^{2}+7x-4+4x-\left(-xx\right)+7x=-28
Multiply -4 and -1 to get 4.
2x^{2}+11x-4-\left(-xx\right)+7x=-28
Combine 7x and 4x to get 11x.
2x^{2}+11x-4-\left(-x^{2}\right)+7x=-28
Multiply x and x to get x^{2}.
2x^{2}+11x-4+x^{2}+7x=-28
Multiply -1 and -1 to get 1.
3x^{2}+11x-4+7x=-28
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+18x-4=-28
Combine 11x and 7x to get 18x.
3x^{2}+18x=-28+4
Add 4 to both sides.
3x^{2}+18x=-24
Add -28 and 4 to get -24.
\frac{3x^{2}+18x}{3}=-\frac{24}{3}
Divide both sides by 3.
x^{2}+\frac{18}{3}x=-\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+6x=-\frac{24}{3}
Divide 18 by 3.
x^{2}+6x=-8
Divide -24 by 3.
x^{2}+6x+3^{2}=-8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-8+9
Square 3.
x^{2}+6x+9=1
Add -8 to 9.
\left(x+3\right)^{2}=1
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+3=1 x+3=-1
Simplify.
x=-2 x=-4
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}