Solve for d
d=-\frac{x\left(9x+400\right)}{5\left(x-80\right)\left(x+4\right)}
x\neq -4\text{ and }x\neq 80\text{ and }x\neq 0
Solve for x
\left\{\begin{matrix}x=-\frac{10\left(-\sqrt{441d^{2}-616d+400}-19d+20\right)}{5d+9}\text{, }&d\neq -\frac{9}{5}\text{ and }d\neq 0\\x=-\frac{10\left(\sqrt{441d^{2}-616d+400}-19d+20\right)}{5d+9}\text{, }&d\neq -\frac{9}{5}\\x=-\frac{720}{271}\text{, }&d=-\frac{9}{5}\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x+4\right)\left(\frac{400}{x}-5\right)dx=\left(\frac{400}{x}+9\right)xx
Multiply both sides of the equation by x.
\left(x+4\right)\left(\frac{400}{x}-5\right)dx=\left(\frac{400}{x}+9\right)x^{2}
Multiply x and x to get x^{2}.
\left(x+4\right)\left(\frac{400}{x}-\frac{5x}{x}\right)dx=\left(\frac{400}{x}+9\right)x^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{x}{x}.
\left(x+4\right)\times \frac{400-5x}{x}dx=\left(\frac{400}{x}+9\right)x^{2}
Since \frac{400}{x} and \frac{5x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x+4\right)\left(400-5x\right)}{x}dx=\left(\frac{400}{x}+9\right)x^{2}
Express \left(x+4\right)\times \frac{400-5x}{x} as a single fraction.
\frac{\left(x+4\right)\left(400-5x\right)d}{x}x=\left(\frac{400}{x}+9\right)x^{2}
Express \frac{\left(x+4\right)\left(400-5x\right)}{x}d as a single fraction.
\frac{\left(x+4\right)\left(400-5x\right)dx}{x}=\left(\frac{400}{x}+9\right)x^{2}
Express \frac{\left(x+4\right)\left(400-5x\right)d}{x}x as a single fraction.
d\left(x+4\right)\left(-5x+400\right)=\left(\frac{400}{x}+9\right)x^{2}
Cancel out x in both numerator and denominator.
\left(dx+4d\right)\left(-5x+400\right)=\left(\frac{400}{x}+9\right)x^{2}
Use the distributive property to multiply d by x+4.
-5dx^{2}+380dx+1600d=\left(\frac{400}{x}+9\right)x^{2}
Use the distributive property to multiply dx+4d by -5x+400 and combine like terms.
-5dx^{2}+380dx+1600d=\left(\frac{400}{x}+\frac{9x}{x}\right)x^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{x}{x}.
-5dx^{2}+380dx+1600d=\frac{400+9x}{x}x^{2}
Since \frac{400}{x} and \frac{9x}{x} have the same denominator, add them by adding their numerators.
-5dx^{2}+380dx+1600d=\frac{\left(400+9x\right)x^{2}}{x}
Express \frac{400+9x}{x}x^{2} as a single fraction.
-5dx^{2}+380dx+1600d=x\left(9x+400\right)
Cancel out x in both numerator and denominator.
-5dx^{2}+380dx+1600d=9x^{2}+400x
Use the distributive property to multiply x by 9x+400.
\left(-5x^{2}+380x+1600\right)d=9x^{2}+400x
Combine all terms containing d.
\left(1600+380x-5x^{2}\right)d=9x^{2}+400x
The equation is in standard form.
\frac{\left(1600+380x-5x^{2}\right)d}{1600+380x-5x^{2}}=\frac{x\left(9x+400\right)}{1600+380x-5x^{2}}
Divide both sides by -5x^{2}+380x+1600.
d=\frac{x\left(9x+400\right)}{1600+380x-5x^{2}}
Dividing by -5x^{2}+380x+1600 undoes the multiplication by -5x^{2}+380x+1600.
d=\frac{x\left(9x+400\right)}{-5\left(x-80\right)\left(x+4\right)}
Divide x\left(400+9x\right) by -5x^{2}+380x+1600.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}