Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+8x+16=16\left(2x-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=16\left(4x^{2}-20x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
x^{2}+8x+16=64x^{2}-320x+400
Use the distributive property to multiply 16 by 4x^{2}-20x+25.
x^{2}+8x+16-64x^{2}=-320x+400
Subtract 64x^{2} from both sides.
-63x^{2}+8x+16=-320x+400
Combine x^{2} and -64x^{2} to get -63x^{2}.
-63x^{2}+8x+16+320x=400
Add 320x to both sides.
-63x^{2}+328x+16=400
Combine 8x and 320x to get 328x.
-63x^{2}+328x+16-400=0
Subtract 400 from both sides.
-63x^{2}+328x-384=0
Subtract 400 from 16 to get -384.
x=\frac{-328±\sqrt{328^{2}-4\left(-63\right)\left(-384\right)}}{2\left(-63\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -63 for a, 328 for b, and -384 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-328±\sqrt{107584-4\left(-63\right)\left(-384\right)}}{2\left(-63\right)}
Square 328.
x=\frac{-328±\sqrt{107584+252\left(-384\right)}}{2\left(-63\right)}
Multiply -4 times -63.
x=\frac{-328±\sqrt{107584-96768}}{2\left(-63\right)}
Multiply 252 times -384.
x=\frac{-328±\sqrt{10816}}{2\left(-63\right)}
Add 107584 to -96768.
x=\frac{-328±104}{2\left(-63\right)}
Take the square root of 10816.
x=\frac{-328±104}{-126}
Multiply 2 times -63.
x=-\frac{224}{-126}
Now solve the equation x=\frac{-328±104}{-126} when ± is plus. Add -328 to 104.
x=\frac{16}{9}
Reduce the fraction \frac{-224}{-126} to lowest terms by extracting and canceling out 14.
x=-\frac{432}{-126}
Now solve the equation x=\frac{-328±104}{-126} when ± is minus. Subtract 104 from -328.
x=\frac{24}{7}
Reduce the fraction \frac{-432}{-126} to lowest terms by extracting and canceling out 18.
x=\frac{16}{9} x=\frac{24}{7}
The equation is now solved.
x^{2}+8x+16=16\left(2x-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=16\left(4x^{2}-20x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
x^{2}+8x+16=64x^{2}-320x+400
Use the distributive property to multiply 16 by 4x^{2}-20x+25.
x^{2}+8x+16-64x^{2}=-320x+400
Subtract 64x^{2} from both sides.
-63x^{2}+8x+16=-320x+400
Combine x^{2} and -64x^{2} to get -63x^{2}.
-63x^{2}+8x+16+320x=400
Add 320x to both sides.
-63x^{2}+328x+16=400
Combine 8x and 320x to get 328x.
-63x^{2}+328x=400-16
Subtract 16 from both sides.
-63x^{2}+328x=384
Subtract 16 from 400 to get 384.
\frac{-63x^{2}+328x}{-63}=\frac{384}{-63}
Divide both sides by -63.
x^{2}+\frac{328}{-63}x=\frac{384}{-63}
Dividing by -63 undoes the multiplication by -63.
x^{2}-\frac{328}{63}x=\frac{384}{-63}
Divide 328 by -63.
x^{2}-\frac{328}{63}x=-\frac{128}{21}
Reduce the fraction \frac{384}{-63} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{328}{63}x+\left(-\frac{164}{63}\right)^{2}=-\frac{128}{21}+\left(-\frac{164}{63}\right)^{2}
Divide -\frac{328}{63}, the coefficient of the x term, by 2 to get -\frac{164}{63}. Then add the square of -\frac{164}{63} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{328}{63}x+\frac{26896}{3969}=-\frac{128}{21}+\frac{26896}{3969}
Square -\frac{164}{63} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{328}{63}x+\frac{26896}{3969}=\frac{2704}{3969}
Add -\frac{128}{21} to \frac{26896}{3969} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{164}{63}\right)^{2}=\frac{2704}{3969}
Factor x^{2}-\frac{328}{63}x+\frac{26896}{3969}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{164}{63}\right)^{2}}=\sqrt{\frac{2704}{3969}}
Take the square root of both sides of the equation.
x-\frac{164}{63}=\frac{52}{63} x-\frac{164}{63}=-\frac{52}{63}
Simplify.
x=\frac{24}{7} x=\frac{16}{9}
Add \frac{164}{63} to both sides of the equation.