Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+8x+16+\left(y-1\right)^{2}+49=\sqrt{\left(x-3\right)^{2}}+\left(y-5\right)^{2}+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16+y^{2}-2y+1+49=\sqrt{\left(x-3\right)^{2}}+\left(y-5\right)^{2}+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
x^{2}+8x+17+y^{2}-2y+49=\sqrt{\left(x-3\right)^{2}}+\left(y-5\right)^{2}+4
Add 16 and 1 to get 17.
x^{2}+8x+66+y^{2}-2y=\sqrt{\left(x-3\right)^{2}}+\left(y-5\right)^{2}+4
Add 17 and 49 to get 66.
x^{2}+8x+66+y^{2}-2y=\sqrt{x^{2}-6x+9}+\left(y-5\right)^{2}+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}+8x+66+y^{2}-2y=\sqrt{x^{2}-6x+9}+y^{2}-10y+25+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-5\right)^{2}.
x^{2}+8x+66+y^{2}-2y=\sqrt{x^{2}-6x+9}+y^{2}-10y+29
Add 25 and 4 to get 29.
x^{2}+8x+66+y^{2}-2y-y^{2}=\sqrt{x^{2}-6x+9}-10y+29
Subtract y^{2} from both sides.
x^{2}+8x+66-2y=\sqrt{x^{2}-6x+9}-10y+29
Combine y^{2} and -y^{2} to get 0.
x^{2}+8x+66-2y+10y=\sqrt{x^{2}-6x+9}+29
Add 10y to both sides.
x^{2}+8x+66+8y=\sqrt{x^{2}-6x+9}+29
Combine -2y and 10y to get 8y.
8x+66+8y=\sqrt{x^{2}-6x+9}+29-x^{2}
Subtract x^{2} from both sides.
66+8y=\sqrt{x^{2}-6x+9}+29-x^{2}-8x
Subtract 8x from both sides.
8y=\sqrt{x^{2}-6x+9}+29-x^{2}-8x-66
Subtract 66 from both sides.
8y=\sqrt{x^{2}-6x+9}-37-x^{2}-8x
Subtract 66 from 29 to get -37.
8y=-x^{2}+\sqrt{x^{2}-6x+9}-8x-37
The equation is in standard form.
\frac{8y}{8}=\frac{-x^{2}+|x-3|-8x-37}{8}
Divide both sides by 8.
y=\frac{-x^{2}+|x-3|-8x-37}{8}
Dividing by 8 undoes the multiplication by 8.
y=-\frac{x^{2}}{8}+\frac{|x-3|}{8}-x-\frac{37}{8}
Divide |x-3|-37-x^{2}-8x by 8.