Solve for x (complex solution)
x=\frac{1+\sqrt{73}i}{2}\approx 0.5+4.272001873i
x=\frac{-\sqrt{73}i+1}{2}\approx 0.5-4.272001873i
Graph
Share
Copied to clipboard
x^{2}+8x+16+\left(x-5\right)^{2}=2^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16+x^{2}-10x+25=2^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
2x^{2}+8x+16-10x+25=2^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x+16+25=2^{2}
Combine 8x and -10x to get -2x.
2x^{2}-2x+41=2^{2}
Add 16 and 25 to get 41.
2x^{2}-2x+41=4
Calculate 2 to the power of 2 and get 4.
2x^{2}-2x+41-4=0
Subtract 4 from both sides.
2x^{2}-2x+37=0
Subtract 4 from 41 to get 37.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 37}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and 37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\times 37}}{2\times 2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\times 37}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\right)±\sqrt{4-296}}{2\times 2}
Multiply -8 times 37.
x=\frac{-\left(-2\right)±\sqrt{-292}}{2\times 2}
Add 4 to -296.
x=\frac{-\left(-2\right)±2\sqrt{73}i}{2\times 2}
Take the square root of -292.
x=\frac{2±2\sqrt{73}i}{2\times 2}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{73}i}{4}
Multiply 2 times 2.
x=\frac{2+2\sqrt{73}i}{4}
Now solve the equation x=\frac{2±2\sqrt{73}i}{4} when ± is plus. Add 2 to 2i\sqrt{73}.
x=\frac{1+\sqrt{73}i}{2}
Divide 2+2i\sqrt{73} by 4.
x=\frac{-2\sqrt{73}i+2}{4}
Now solve the equation x=\frac{2±2\sqrt{73}i}{4} when ± is minus. Subtract 2i\sqrt{73} from 2.
x=\frac{-\sqrt{73}i+1}{2}
Divide 2-2i\sqrt{73} by 4.
x=\frac{1+\sqrt{73}i}{2} x=\frac{-\sqrt{73}i+1}{2}
The equation is now solved.
x^{2}+8x+16+\left(x-5\right)^{2}=2^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16+x^{2}-10x+25=2^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
2x^{2}+8x+16-10x+25=2^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2x+16+25=2^{2}
Combine 8x and -10x to get -2x.
2x^{2}-2x+41=2^{2}
Add 16 and 25 to get 41.
2x^{2}-2x+41=4
Calculate 2 to the power of 2 and get 4.
2x^{2}-2x=4-41
Subtract 41 from both sides.
2x^{2}-2x=-37
Subtract 41 from 4 to get -37.
\frac{2x^{2}-2x}{2}=-\frac{37}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2}{2}\right)x=-\frac{37}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-x=-\frac{37}{2}
Divide -2 by 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{37}{2}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{37}{2}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{73}{4}
Add -\frac{37}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{73}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{73}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{73}i}{2} x-\frac{1}{2}=-\frac{\sqrt{73}i}{2}
Simplify.
x=\frac{1+\sqrt{73}i}{2} x=\frac{-\sqrt{73}i+1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}