Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x=40
Use the distributive property to multiply x+3 by x.
x^{2}+3x-40=0
Subtract 40 from both sides.
x=\frac{-3±\sqrt{3^{2}-4\left(-40\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-40\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+160}}{2}
Multiply -4 times -40.
x=\frac{-3±\sqrt{169}}{2}
Add 9 to 160.
x=\frac{-3±13}{2}
Take the square root of 169.
x=\frac{10}{2}
Now solve the equation x=\frac{-3±13}{2} when ± is plus. Add -3 to 13.
x=5
Divide 10 by 2.
x=-\frac{16}{2}
Now solve the equation x=\frac{-3±13}{2} when ± is minus. Subtract 13 from -3.
x=-8
Divide -16 by 2.
x=5 x=-8
The equation is now solved.
x^{2}+3x=40
Use the distributive property to multiply x+3 by x.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=40+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=40+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{169}{4}
Add 40 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{13}{2} x+\frac{3}{2}=-\frac{13}{2}
Simplify.
x=5 x=-8
Subtract \frac{3}{2} from both sides of the equation.