Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-7-\left(x-2\right)^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Subtract 10 from 3 to get -7.
x-7-\left(x^{2}-4x+4\right)=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x-7-x^{2}+4x-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
To find the opposite of x^{2}-4x+4, find the opposite of each term.
5x-7-x^{2}-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Combine x and 4x to get 5x.
5x-11-x^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Subtract 4 from -7 to get -11.
5x-11-x^{2}=x^{2}-2x+1-\left(x-5\right)^{2}+4+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-\left(x^{2}-10x+25\right)+4+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-x^{2}+10x-25+4+x
To find the opposite of x^{2}-10x+25, find the opposite of each term.
5x-11-x^{2}=-2x+1+10x-25+4+x
Combine x^{2} and -x^{2} to get 0.
5x-11-x^{2}=8x+1-25+4+x
Combine -2x and 10x to get 8x.
5x-11-x^{2}=8x-24+4+x
Subtract 25 from 1 to get -24.
5x-11-x^{2}=8x-20+x
Add -24 and 4 to get -20.
5x-11-x^{2}=9x-20
Combine 8x and x to get 9x.
5x-11-x^{2}-9x=-20
Subtract 9x from both sides.
-4x-11-x^{2}=-20
Combine 5x and -9x to get -4x.
-4x-11-x^{2}+20=0
Add 20 to both sides.
-4x+9-x^{2}=0
Add -11 and 20 to get 9.
-x^{2}-4x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 9}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 9}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\times 9}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2\left(-1\right)}
Multiply 4 times 9.
x=\frac{-\left(-4\right)±\sqrt{52}}{2\left(-1\right)}
Add 16 to 36.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2\left(-1\right)}
Take the square root of 52.
x=\frac{4±2\sqrt{13}}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{13}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{13}+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{13}}{-2} when ± is plus. Add 4 to 2\sqrt{13}.
x=-\left(\sqrt{13}+2\right)
Divide 4+2\sqrt{13} by -2.
x=\frac{4-2\sqrt{13}}{-2}
Now solve the equation x=\frac{4±2\sqrt{13}}{-2} when ± is minus. Subtract 2\sqrt{13} from 4.
x=\sqrt{13}-2
Divide 4-2\sqrt{13} by -2.
x=-\left(\sqrt{13}+2\right) x=\sqrt{13}-2
The equation is now solved.
x-7-\left(x-2\right)^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Subtract 10 from 3 to get -7.
x-7-\left(x^{2}-4x+4\right)=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x-7-x^{2}+4x-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
To find the opposite of x^{2}-4x+4, find the opposite of each term.
5x-7-x^{2}-4=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Combine x and 4x to get 5x.
5x-11-x^{2}=\left(x-1\right)^{2}-\left(x-5\right)^{2}+4+x
Subtract 4 from -7 to get -11.
5x-11-x^{2}=x^{2}-2x+1-\left(x-5\right)^{2}+4+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-\left(x^{2}-10x+25\right)+4+x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
5x-11-x^{2}=x^{2}-2x+1-x^{2}+10x-25+4+x
To find the opposite of x^{2}-10x+25, find the opposite of each term.
5x-11-x^{2}=-2x+1+10x-25+4+x
Combine x^{2} and -x^{2} to get 0.
5x-11-x^{2}=8x+1-25+4+x
Combine -2x and 10x to get 8x.
5x-11-x^{2}=8x-24+4+x
Subtract 25 from 1 to get -24.
5x-11-x^{2}=8x-20+x
Add -24 and 4 to get -20.
5x-11-x^{2}=9x-20
Combine 8x and x to get 9x.
5x-11-x^{2}-9x=-20
Subtract 9x from both sides.
-4x-11-x^{2}=-20
Combine 5x and -9x to get -4x.
-4x-x^{2}=-20+11
Add 11 to both sides.
-4x-x^{2}=-9
Add -20 and 11 to get -9.
-x^{2}-4x=-9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-4x}{-1}=-\frac{9}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{9}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=-\frac{9}{-1}
Divide -4 by -1.
x^{2}+4x=9
Divide -9 by -1.
x^{2}+4x+2^{2}=9+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=9+4
Square 2.
x^{2}+4x+4=13
Add 9 to 4.
\left(x+2\right)^{2}=13
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+2=\sqrt{13} x+2=-\sqrt{13}
Simplify.
x=\sqrt{13}-2 x=-\sqrt{13}-2
Subtract 2 from both sides of the equation.