Solve for x
x=-\frac{-y^{2}+3y-18}{y+1}
y\neq -1
Solve for y (complex solution)
y=\frac{-\sqrt{x^{2}+10x-63}+x+3}{2}
y=\frac{\sqrt{x^{2}+10x-63}+x+3}{2}
Solve for y
y=\frac{-\sqrt{x^{2}+10x-63}+x+3}{2}
y=\frac{\sqrt{x^{2}+10x-63}+x+3}{2}\text{, }x\geq 2\sqrt{22}-5\text{ or }x\leq -2\sqrt{22}-5
Graph
Share
Copied to clipboard
xy-3x+3y-9-\left(y^{2}-4x\right)=9
Use the distributive property to multiply x+3 by y-3.
xy-3x+3y-9-y^{2}+4x=9
To find the opposite of y^{2}-4x, find the opposite of each term.
xy+x+3y-9-y^{2}=9
Combine -3x and 4x to get x.
xy+x-9-y^{2}=9-3y
Subtract 3y from both sides.
xy+x-y^{2}=9-3y+9
Add 9 to both sides.
xy+x-y^{2}=18-3y
Add 9 and 9 to get 18.
xy+x=18-3y+y^{2}
Add y^{2} to both sides.
\left(y+1\right)x=18-3y+y^{2}
Combine all terms containing x.
\left(y+1\right)x=y^{2}-3y+18
The equation is in standard form.
\frac{\left(y+1\right)x}{y+1}=\frac{y^{2}-3y+18}{y+1}
Divide both sides by y+1.
x=\frac{y^{2}-3y+18}{y+1}
Dividing by y+1 undoes the multiplication by y+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}