Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-3^{2}-\left(2x+1\right)\left(x-2\right)
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-9-\left(2x+1\right)\left(x-2\right)
Calculate 3 to the power of 2 and get 9.
x^{2}-9-\left(2x^{2}-4x+x-2\right)
Apply the distributive property by multiplying each term of 2x+1 by each term of x-2.
x^{2}-9-\left(2x^{2}-3x-2\right)
Combine -4x and x to get -3x.
x^{2}-9-2x^{2}-\left(-3x\right)-\left(-2\right)
To find the opposite of 2x^{2}-3x-2, find the opposite of each term.
x^{2}-9-2x^{2}+3x-\left(-2\right)
The opposite of -3x is 3x.
x^{2}-9-2x^{2}+3x+2
The opposite of -2 is 2.
-x^{2}-9+3x+2
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-7+3x
Add -9 and 2 to get -7.
x^{2}-3^{2}-\left(2x+1\right)\left(x-2\right)
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-9-\left(2x+1\right)\left(x-2\right)
Calculate 3 to the power of 2 and get 9.
x^{2}-9-\left(2x^{2}-4x+x-2\right)
Apply the distributive property by multiplying each term of 2x+1 by each term of x-2.
x^{2}-9-\left(2x^{2}-3x-2\right)
Combine -4x and x to get -3x.
x^{2}-9-2x^{2}-\left(-3x\right)-\left(-2\right)
To find the opposite of 2x^{2}-3x-2, find the opposite of each term.
x^{2}-9-2x^{2}+3x-\left(-2\right)
The opposite of -3x is 3x.
x^{2}-9-2x^{2}+3x+2
The opposite of -2 is 2.
-x^{2}-9+3x+2
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-7+3x
Add -9 and 2 to get -7.