Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-9=5
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}=5+9
Add 9 to both sides.
x^{2}=14
Add 5 and 9 to get 14.
x=\sqrt{14} x=-\sqrt{14}
Take the square root of both sides of the equation.
x^{2}-9=5
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}-9-5=0
Subtract 5 from both sides.
x^{2}-14=0
Subtract 5 from -9 to get -14.
x=\frac{0±\sqrt{0^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-14\right)}}{2}
Square 0.
x=\frac{0±\sqrt{56}}{2}
Multiply -4 times -14.
x=\frac{0±2\sqrt{14}}{2}
Take the square root of 56.
x=\sqrt{14}
Now solve the equation x=\frac{0±2\sqrt{14}}{2} when ± is plus.
x=-\sqrt{14}
Now solve the equation x=\frac{0±2\sqrt{14}}{2} when ± is minus.
x=\sqrt{14} x=-\sqrt{14}
The equation is now solved.