Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x-6=24
Use the distributive property to multiply x+3 by x-2 and combine like terms.
x^{2}+x-6-24=0
Subtract 24 from both sides.
x^{2}+x-30=0
Subtract 24 from -6 to get -30.
x=\frac{-1±\sqrt{1^{2}-4\left(-30\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-30\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+120}}{2}
Multiply -4 times -30.
x=\frac{-1±\sqrt{121}}{2}
Add 1 to 120.
x=\frac{-1±11}{2}
Take the square root of 121.
x=\frac{10}{2}
Now solve the equation x=\frac{-1±11}{2} when ± is plus. Add -1 to 11.
x=5
Divide 10 by 2.
x=-\frac{12}{2}
Now solve the equation x=\frac{-1±11}{2} when ± is minus. Subtract 11 from -1.
x=-6
Divide -12 by 2.
x=5 x=-6
The equation is now solved.
x^{2}+x-6=24
Use the distributive property to multiply x+3 by x-2 and combine like terms.
x^{2}+x=24+6
Add 6 to both sides.
x^{2}+x=30
Add 24 and 6 to get 30.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=30+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{121}{4}
Add 30 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{11}{2} x+\frac{1}{2}=-\frac{11}{2}
Simplify.
x=5 x=-6
Subtract \frac{1}{2} from both sides of the equation.