Solve for x
x=\frac{\sqrt{73}-9}{2}\approx -0.227998127
x=\frac{-\sqrt{73}-9}{2}\approx -8.772001873
Graph
Share
Copied to clipboard
x^{2}+9x+18=16
Use the distributive property to multiply x+3 by x+6 and combine like terms.
x^{2}+9x+18-16=0
Subtract 16 from both sides.
x^{2}+9x+2=0
Subtract 16 from 18 to get 2.
x=\frac{-9±\sqrt{9^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 9 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 2}}{2}
Square 9.
x=\frac{-9±\sqrt{81-8}}{2}
Multiply -4 times 2.
x=\frac{-9±\sqrt{73}}{2}
Add 81 to -8.
x=\frac{\sqrt{73}-9}{2}
Now solve the equation x=\frac{-9±\sqrt{73}}{2} when ± is plus. Add -9 to \sqrt{73}.
x=\frac{-\sqrt{73}-9}{2}
Now solve the equation x=\frac{-9±\sqrt{73}}{2} when ± is minus. Subtract \sqrt{73} from -9.
x=\frac{\sqrt{73}-9}{2} x=\frac{-\sqrt{73}-9}{2}
The equation is now solved.
x^{2}+9x+18=16
Use the distributive property to multiply x+3 by x+6 and combine like terms.
x^{2}+9x=16-18
Subtract 18 from both sides.
x^{2}+9x=-2
Subtract 18 from 16 to get -2.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=-2+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=-2+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{73}{4}
Add -2 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{73}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{\sqrt{73}}{2} x+\frac{9}{2}=-\frac{\sqrt{73}}{2}
Simplify.
x=\frac{\sqrt{73}-9}{2} x=\frac{-\sqrt{73}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}