Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}+9x^{2}+27x+27-\left(x-1\right)^{3}=0
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+3\right)^{3}.
x^{3}+9x^{2}+27x+27-\left(x^{3}-3x^{2}+3x-1\right)=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}+9x^{2}+27x+27-x^{3}+3x^{2}-3x+1=0
To find the opposite of x^{3}-3x^{2}+3x-1, find the opposite of each term.
9x^{2}+27x+27+3x^{2}-3x+1=0
Combine x^{3} and -x^{3} to get 0.
12x^{2}+27x+27-3x+1=0
Combine 9x^{2} and 3x^{2} to get 12x^{2}.
12x^{2}+24x+27+1=0
Combine 27x and -3x to get 24x.
12x^{2}+24x+28=0
Add 27 and 1 to get 28.
x=\frac{-24±\sqrt{24^{2}-4\times 12\times 28}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 24 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 12\times 28}}{2\times 12}
Square 24.
x=\frac{-24±\sqrt{576-48\times 28}}{2\times 12}
Multiply -4 times 12.
x=\frac{-24±\sqrt{576-1344}}{2\times 12}
Multiply -48 times 28.
x=\frac{-24±\sqrt{-768}}{2\times 12}
Add 576 to -1344.
x=\frac{-24±16\sqrt{3}i}{2\times 12}
Take the square root of -768.
x=\frac{-24±16\sqrt{3}i}{24}
Multiply 2 times 12.
x=\frac{-24+16\sqrt{3}i}{24}
Now solve the equation x=\frac{-24±16\sqrt{3}i}{24} when ± is plus. Add -24 to 16i\sqrt{3}.
x=\frac{2\sqrt{3}i}{3}-1
Divide -24+16i\sqrt{3} by 24.
x=\frac{-16\sqrt{3}i-24}{24}
Now solve the equation x=\frac{-24±16\sqrt{3}i}{24} when ± is minus. Subtract 16i\sqrt{3} from -24.
x=-\frac{2\sqrt{3}i}{3}-1
Divide -24-16i\sqrt{3} by 24.
x=\frac{2\sqrt{3}i}{3}-1 x=-\frac{2\sqrt{3}i}{3}-1
The equation is now solved.
x^{3}+9x^{2}+27x+27-\left(x-1\right)^{3}=0
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+3\right)^{3}.
x^{3}+9x^{2}+27x+27-\left(x^{3}-3x^{2}+3x-1\right)=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}+9x^{2}+27x+27-x^{3}+3x^{2}-3x+1=0
To find the opposite of x^{3}-3x^{2}+3x-1, find the opposite of each term.
9x^{2}+27x+27+3x^{2}-3x+1=0
Combine x^{3} and -x^{3} to get 0.
12x^{2}+27x+27-3x+1=0
Combine 9x^{2} and 3x^{2} to get 12x^{2}.
12x^{2}+24x+27+1=0
Combine 27x and -3x to get 24x.
12x^{2}+24x+28=0
Add 27 and 1 to get 28.
12x^{2}+24x=-28
Subtract 28 from both sides. Anything subtracted from zero gives its negation.
\frac{12x^{2}+24x}{12}=-\frac{28}{12}
Divide both sides by 12.
x^{2}+\frac{24}{12}x=-\frac{28}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+2x=-\frac{28}{12}
Divide 24 by 12.
x^{2}+2x=-\frac{7}{3}
Reduce the fraction \frac{-28}{12} to lowest terms by extracting and canceling out 4.
x^{2}+2x+1^{2}=-\frac{7}{3}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{7}{3}+1
Square 1.
x^{2}+2x+1=-\frac{4}{3}
Add -\frac{7}{3} to 1.
\left(x+1\right)^{2}=-\frac{4}{3}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-\frac{4}{3}}
Take the square root of both sides of the equation.
x+1=\frac{2\sqrt{3}i}{3} x+1=-\frac{2\sqrt{3}i}{3}
Simplify.
x=\frac{2\sqrt{3}i}{3}-1 x=-\frac{2\sqrt{3}i}{3}-1
Subtract 1 from both sides of the equation.