Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+9+x=7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+7x+9=7
Combine 6x and x to get 7x.
x^{2}+7x+9-7=0
Subtract 7 from both sides.
x^{2}+7x+2=0
Subtract 7 from 9 to get 2.
x=\frac{-7±\sqrt{7^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2}}{2}
Square 7.
x=\frac{-7±\sqrt{49-8}}{2}
Multiply -4 times 2.
x=\frac{-7±\sqrt{41}}{2}
Add 49 to -8.
x=\frac{\sqrt{41}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{41}}{2} when ± is plus. Add -7 to \sqrt{41}.
x=\frac{-\sqrt{41}-7}{2}
Now solve the equation x=\frac{-7±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from -7.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
The equation is now solved.
x^{2}+6x+9+x=7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+7x+9=7
Combine 6x and x to get 7x.
x^{2}+7x=7-9
Subtract 9 from both sides.
x^{2}+7x=-2
Subtract 9 from 7 to get -2.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-2+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=-2+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{41}{4}
Add -2 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{\sqrt{41}}{2} x+\frac{7}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.