Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+9+5x=8
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+11x+9=8
Combine 6x and 5x to get 11x.
x^{2}+11x+9-8=0
Subtract 8 from both sides.
x^{2}+11x+1=0
Subtract 8 from 9 to get 1.
x=\frac{-11±\sqrt{11^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 11 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4}}{2}
Square 11.
x=\frac{-11±\sqrt{117}}{2}
Add 121 to -4.
x=\frac{-11±3\sqrt{13}}{2}
Take the square root of 117.
x=\frac{3\sqrt{13}-11}{2}
Now solve the equation x=\frac{-11±3\sqrt{13}}{2} when ± is plus. Add -11 to 3\sqrt{13}.
x=\frac{-3\sqrt{13}-11}{2}
Now solve the equation x=\frac{-11±3\sqrt{13}}{2} when ± is minus. Subtract 3\sqrt{13} from -11.
x=\frac{3\sqrt{13}-11}{2} x=\frac{-3\sqrt{13}-11}{2}
The equation is now solved.
x^{2}+6x+9+5x=8
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+11x+9=8
Combine 6x and 5x to get 11x.
x^{2}+11x=8-9
Subtract 9 from both sides.
x^{2}+11x=-1
Subtract 9 from 8 to get -1.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-1+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-1+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{117}{4}
Add -1 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{117}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{117}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{3\sqrt{13}}{2} x+\frac{11}{2}=-\frac{3\sqrt{13}}{2}
Simplify.
x=\frac{3\sqrt{13}-11}{2} x=\frac{-3\sqrt{13}-11}{2}
Subtract \frac{11}{2} from both sides of the equation.