Solve for x
x=-12
x=-7
Graph
Share
Copied to clipboard
x^{2}+6x+9+13\left(x+3\right)+36=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+13x+39+36=0
Use the distributive property to multiply 13 by x+3.
x^{2}+19x+9+39+36=0
Combine 6x and 13x to get 19x.
x^{2}+19x+48+36=0
Add 9 and 39 to get 48.
x^{2}+19x+84=0
Add 48 and 36 to get 84.
a+b=19 ab=84
To solve the equation, factor x^{2}+19x+84 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,84 2,42 3,28 4,21 6,14 7,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Calculate the sum for each pair.
a=7 b=12
The solution is the pair that gives sum 19.
\left(x+7\right)\left(x+12\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-7 x=-12
To find equation solutions, solve x+7=0 and x+12=0.
x^{2}+6x+9+13\left(x+3\right)+36=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+13x+39+36=0
Use the distributive property to multiply 13 by x+3.
x^{2}+19x+9+39+36=0
Combine 6x and 13x to get 19x.
x^{2}+19x+48+36=0
Add 9 and 39 to get 48.
x^{2}+19x+84=0
Add 48 and 36 to get 84.
a+b=19 ab=1\times 84=84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+84. To find a and b, set up a system to be solved.
1,84 2,42 3,28 4,21 6,14 7,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Calculate the sum for each pair.
a=7 b=12
The solution is the pair that gives sum 19.
\left(x^{2}+7x\right)+\left(12x+84\right)
Rewrite x^{2}+19x+84 as \left(x^{2}+7x\right)+\left(12x+84\right).
x\left(x+7\right)+12\left(x+7\right)
Factor out x in the first and 12 in the second group.
\left(x+7\right)\left(x+12\right)
Factor out common term x+7 by using distributive property.
x=-7 x=-12
To find equation solutions, solve x+7=0 and x+12=0.
x^{2}+6x+9+13\left(x+3\right)+36=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+13x+39+36=0
Use the distributive property to multiply 13 by x+3.
x^{2}+19x+9+39+36=0
Combine 6x and 13x to get 19x.
x^{2}+19x+48+36=0
Add 9 and 39 to get 48.
x^{2}+19x+84=0
Add 48 and 36 to get 84.
x=\frac{-19±\sqrt{19^{2}-4\times 84}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and 84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\times 84}}{2}
Square 19.
x=\frac{-19±\sqrt{361-336}}{2}
Multiply -4 times 84.
x=\frac{-19±\sqrt{25}}{2}
Add 361 to -336.
x=\frac{-19±5}{2}
Take the square root of 25.
x=-\frac{14}{2}
Now solve the equation x=\frac{-19±5}{2} when ± is plus. Add -19 to 5.
x=-7
Divide -14 by 2.
x=-\frac{24}{2}
Now solve the equation x=\frac{-19±5}{2} when ± is minus. Subtract 5 from -19.
x=-12
Divide -24 by 2.
x=-7 x=-12
The equation is now solved.
x^{2}+6x+9+13\left(x+3\right)+36=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+13x+39+36=0
Use the distributive property to multiply 13 by x+3.
x^{2}+19x+9+39+36=0
Combine 6x and 13x to get 19x.
x^{2}+19x+48+36=0
Add 9 and 39 to get 48.
x^{2}+19x+84=0
Add 48 and 36 to get 84.
x^{2}+19x=-84
Subtract 84 from both sides. Anything subtracted from zero gives its negation.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=-84+\left(\frac{19}{2}\right)^{2}
Divide 19, the coefficient of the x term, by 2 to get \frac{19}{2}. Then add the square of \frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+19x+\frac{361}{4}=-84+\frac{361}{4}
Square \frac{19}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+19x+\frac{361}{4}=\frac{25}{4}
Add -84 to \frac{361}{4}.
\left(x+\frac{19}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+19x+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{19}{2}=\frac{5}{2} x+\frac{19}{2}=-\frac{5}{2}
Simplify.
x=-7 x=-12
Subtract \frac{19}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}