Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+9+\left(x-3\right)^{2}=\left(x+3\right)\left(x-3\right)+31
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+x^{2}-6x+9=\left(x+3\right)\left(x-3\right)+31
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}+6x+9-6x+9=\left(x+3\right)\left(x-3\right)+31
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+9+9=\left(x+3\right)\left(x-3\right)+31
Combine 6x and -6x to get 0.
2x^{2}+18=\left(x+3\right)\left(x-3\right)+31
Add 9 and 9 to get 18.
2x^{2}+18=x^{2}-9+31
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}+18=x^{2}+22
Add -9 and 31 to get 22.
2x^{2}+18-x^{2}=22
Subtract x^{2} from both sides.
x^{2}+18=22
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+18-22=0
Subtract 22 from both sides.
x^{2}-4=0
Subtract 22 from 18 to get -4.
\left(x-2\right)\left(x+2\right)=0
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
x^{2}+6x+9+\left(x-3\right)^{2}=\left(x+3\right)\left(x-3\right)+31
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+x^{2}-6x+9=\left(x+3\right)\left(x-3\right)+31
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}+6x+9-6x+9=\left(x+3\right)\left(x-3\right)+31
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+9+9=\left(x+3\right)\left(x-3\right)+31
Combine 6x and -6x to get 0.
2x^{2}+18=\left(x+3\right)\left(x-3\right)+31
Add 9 and 9 to get 18.
2x^{2}+18=x^{2}-9+31
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}+18=x^{2}+22
Add -9 and 31 to get 22.
2x^{2}+18-x^{2}=22
Subtract x^{2} from both sides.
x^{2}+18=22
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}=22-18
Subtract 18 from both sides.
x^{2}=4
Subtract 18 from 22 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
x^{2}+6x+9+\left(x-3\right)^{2}=\left(x+3\right)\left(x-3\right)+31
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+x^{2}-6x+9=\left(x+3\right)\left(x-3\right)+31
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}+6x+9-6x+9=\left(x+3\right)\left(x-3\right)+31
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+9+9=\left(x+3\right)\left(x-3\right)+31
Combine 6x and -6x to get 0.
2x^{2}+18=\left(x+3\right)\left(x-3\right)+31
Add 9 and 9 to get 18.
2x^{2}+18=x^{2}-9+31
Consider \left(x+3\right)\left(x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2x^{2}+18=x^{2}+22
Add -9 and 31 to get 22.
2x^{2}+18-x^{2}=22
Subtract x^{2} from both sides.
x^{2}+18=22
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+18-22=0
Subtract 22 from both sides.
x^{2}-4=0
Subtract 22 from 18 to get -4.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Square 0.
x=\frac{0±\sqrt{16}}{2}
Multiply -4 times -4.
x=\frac{0±4}{2}
Take the square root of 16.
x=2
Now solve the equation x=\frac{0±4}{2} when ± is plus. Divide 4 by 2.
x=-2
Now solve the equation x=\frac{0±4}{2} when ± is minus. Divide -4 by 2.
x=2 x=-2
The equation is now solved.