Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+9+\left(7-x-2\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+\left(5-x\right)^{2}=4
Subtract 2 from 7 to get 5.
x^{2}+6x+9+25-10x+x^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
x^{2}+6x+34-10x+x^{2}=4
Add 9 and 25 to get 34.
x^{2}-4x+34+x^{2}=4
Combine 6x and -10x to get -4x.
2x^{2}-4x+34=4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x+34-4=0
Subtract 4 from both sides.
2x^{2}-4x+30=0
Subtract 4 from 34 to get 30.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 30}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 30}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 30}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16-240}}{2\times 2}
Multiply -8 times 30.
x=\frac{-\left(-4\right)±\sqrt{-224}}{2\times 2}
Add 16 to -240.
x=\frac{-\left(-4\right)±4\sqrt{14}i}{2\times 2}
Take the square root of -224.
x=\frac{4±4\sqrt{14}i}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{14}i}{4}
Multiply 2 times 2.
x=\frac{4+4\sqrt{14}i}{4}
Now solve the equation x=\frac{4±4\sqrt{14}i}{4} when ± is plus. Add 4 to 4i\sqrt{14}.
x=1+\sqrt{14}i
Divide 4+4i\sqrt{14} by 4.
x=\frac{-4\sqrt{14}i+4}{4}
Now solve the equation x=\frac{4±4\sqrt{14}i}{4} when ± is minus. Subtract 4i\sqrt{14} from 4.
x=-\sqrt{14}i+1
Divide 4-4i\sqrt{14} by 4.
x=1+\sqrt{14}i x=-\sqrt{14}i+1
The equation is now solved.
x^{2}+6x+9+\left(7-x-2\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+\left(5-x\right)^{2}=4
Subtract 2 from 7 to get 5.
x^{2}+6x+9+25-10x+x^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
x^{2}+6x+34-10x+x^{2}=4
Add 9 and 25 to get 34.
x^{2}-4x+34+x^{2}=4
Combine 6x and -10x to get -4x.
2x^{2}-4x+34=4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x=4-34
Subtract 34 from both sides.
2x^{2}-4x=-30
Subtract 34 from 4 to get -30.
\frac{2x^{2}-4x}{2}=-\frac{30}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{30}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=-\frac{30}{2}
Divide -4 by 2.
x^{2}-2x=-15
Divide -30 by 2.
x^{2}-2x+1=-15+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-14
Add -15 to 1.
\left(x-1\right)^{2}=-14
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-14}
Take the square root of both sides of the equation.
x-1=\sqrt{14}i x-1=-\sqrt{14}i
Simplify.
x=1+\sqrt{14}i x=-\sqrt{14}i+1
Add 1 to both sides of the equation.