Solve for x
x=-34
x=10
Graph
Share
Copied to clipboard
3x^{2}+72x+132=1152
Use the distributive property to multiply x+22 by 3x+6 and combine like terms.
3x^{2}+72x+132-1152=0
Subtract 1152 from both sides.
3x^{2}+72x-1020=0
Subtract 1152 from 132 to get -1020.
x=\frac{-72±\sqrt{72^{2}-4\times 3\left(-1020\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 72 for b, and -1020 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\times 3\left(-1020\right)}}{2\times 3}
Square 72.
x=\frac{-72±\sqrt{5184-12\left(-1020\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-72±\sqrt{5184+12240}}{2\times 3}
Multiply -12 times -1020.
x=\frac{-72±\sqrt{17424}}{2\times 3}
Add 5184 to 12240.
x=\frac{-72±132}{2\times 3}
Take the square root of 17424.
x=\frac{-72±132}{6}
Multiply 2 times 3.
x=\frac{60}{6}
Now solve the equation x=\frac{-72±132}{6} when ± is plus. Add -72 to 132.
x=10
Divide 60 by 6.
x=-\frac{204}{6}
Now solve the equation x=\frac{-72±132}{6} when ± is minus. Subtract 132 from -72.
x=-34
Divide -204 by 6.
x=10 x=-34
The equation is now solved.
3x^{2}+72x+132=1152
Use the distributive property to multiply x+22 by 3x+6 and combine like terms.
3x^{2}+72x=1152-132
Subtract 132 from both sides.
3x^{2}+72x=1020
Subtract 132 from 1152 to get 1020.
\frac{3x^{2}+72x}{3}=\frac{1020}{3}
Divide both sides by 3.
x^{2}+\frac{72}{3}x=\frac{1020}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+24x=\frac{1020}{3}
Divide 72 by 3.
x^{2}+24x=340
Divide 1020 by 3.
x^{2}+24x+12^{2}=340+12^{2}
Divide 24, the coefficient of the x term, by 2 to get 12. Then add the square of 12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+24x+144=340+144
Square 12.
x^{2}+24x+144=484
Add 340 to 144.
\left(x+12\right)^{2}=484
Factor x^{2}+24x+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+12\right)^{2}}=\sqrt{484}
Take the square root of both sides of the equation.
x+12=22 x+12=-22
Simplify.
x=10 x=-34
Subtract 12 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}