Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{3x-460m}{130n}\text{, }&n\neq 0\\k\in \mathrm{C}\text{, }&x=\frac{460m}{3}\text{ and }n=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{3x-460m}{130n}\text{, }&n\neq 0\\k\in \mathrm{R}\text{, }&x=\frac{460m}{3}\text{ and }n=0\end{matrix}\right.
Solve for m
m=\frac{13kn}{46}+\frac{3x}{460}
Graph
Share
Copied to clipboard
2x+40m+4x+260kn=960m
Use the distributive property to multiply x+20m by 2.
6x+40m+260kn=960m
Combine 2x and 4x to get 6x.
40m+260kn=960m-6x
Subtract 6x from both sides.
260kn=960m-6x-40m
Subtract 40m from both sides.
260kn=920m-6x
Combine 960m and -40m to get 920m.
260nk=920m-6x
The equation is in standard form.
\frac{260nk}{260n}=\frac{920m-6x}{260n}
Divide both sides by 260n.
k=\frac{920m-6x}{260n}
Dividing by 260n undoes the multiplication by 260n.
k=\frac{460m-3x}{130n}
Divide -6x+920m by 260n.
2x+40m+4x+260kn=960m
Use the distributive property to multiply x+20m by 2.
6x+40m+260kn=960m
Combine 2x and 4x to get 6x.
40m+260kn=960m-6x
Subtract 6x from both sides.
260kn=960m-6x-40m
Subtract 40m from both sides.
260kn=920m-6x
Combine 960m and -40m to get 920m.
260nk=920m-6x
The equation is in standard form.
\frac{260nk}{260n}=\frac{920m-6x}{260n}
Divide both sides by 260n.
k=\frac{920m-6x}{260n}
Dividing by 260n undoes the multiplication by 260n.
k=\frac{460m-3x}{130n}
Divide 920m-6x by 260n.
2x+40m+4x+260kn=960m
Use the distributive property to multiply x+20m by 2.
6x+40m+260kn=960m
Combine 2x and 4x to get 6x.
6x+40m+260kn-960m=0
Subtract 960m from both sides.
6x-920m+260kn=0
Combine 40m and -960m to get -920m.
-920m+260kn=-6x
Subtract 6x from both sides. Anything subtracted from zero gives its negation.
-920m=-6x-260kn
Subtract 260kn from both sides.
\frac{-920m}{-920}=\frac{-6x-260kn}{-920}
Divide both sides by -920.
m=\frac{-6x-260kn}{-920}
Dividing by -920 undoes the multiplication by -920.
m=\frac{13kn}{46}+\frac{3x}{460}
Divide -6x-260kn by -920.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}