( x + 2 y - 3 ) d y - ( 2 x - y + 1 ) d x = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{ or }x=\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(x=-\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{ and }y\leq -\frac{\sqrt{11}}{5}+\frac{7}{10}\right)\text{ or }\left(x=-\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{ and }y\geq \frac{\sqrt{11}}{5}+\frac{7}{10}\right)\text{ or }\left(x=\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{ and }y\leq -\frac{\sqrt{11}}{5}+\frac{7}{10}\right)\text{ or }\left(x=\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{ and }y\geq \frac{\sqrt{11}}{5}+\frac{7}{10}\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=-\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{; }x=\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{; }x=\frac{\sqrt{20y^{2}-28y+1}}{4}+\frac{y}{2}-\frac{1}{4}\text{, }&y\geq \frac{\sqrt{11}}{5}+\frac{7}{10}\text{ or }y\leq -\frac{\sqrt{11}}{5}+\frac{7}{10}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(xd+2yd-3d\right)y-\left(2x-y+1\right)dx=0
Use the distributive property to multiply x+2y-3 by d.
xdy+2dy^{2}-3dy-\left(2x-y+1\right)dx=0
Use the distributive property to multiply xd+2yd-3d by y.
xdy+2dy^{2}-3dy-\left(2xd-yd+d\right)x=0
Use the distributive property to multiply 2x-y+1 by d.
xdy+2dy^{2}-3dy-\left(2dx^{2}-ydx+dx\right)=0
Use the distributive property to multiply 2xd-yd+d by x.
xdy+2dy^{2}-3dy-2dx^{2}+ydx-dx=0
To find the opposite of 2dx^{2}-ydx+dx, find the opposite of each term.
2xdy+2dy^{2}-3dy-2dx^{2}-dx=0
Combine xdy and ydx to get 2xdy.
\left(2xy+2y^{2}-3y-2x^{2}-x\right)d=0
Combine all terms containing d.
\left(-2x^{2}+2xy-x+2y^{2}-3y\right)d=0
The equation is in standard form.
d=0
Divide 0 by 2xy+2y^{2}-3y-2x^{2}-x.
\left(xd+2yd-3d\right)y-\left(2x-y+1\right)dx=0
Use the distributive property to multiply x+2y-3 by d.
xdy+2dy^{2}-3dy-\left(2x-y+1\right)dx=0
Use the distributive property to multiply xd+2yd-3d by y.
xdy+2dy^{2}-3dy-\left(2xd-yd+d\right)x=0
Use the distributive property to multiply 2x-y+1 by d.
xdy+2dy^{2}-3dy-\left(2dx^{2}-ydx+dx\right)=0
Use the distributive property to multiply 2xd-yd+d by x.
xdy+2dy^{2}-3dy-2dx^{2}+ydx-dx=0
To find the opposite of 2dx^{2}-ydx+dx, find the opposite of each term.
2xdy+2dy^{2}-3dy-2dx^{2}-dx=0
Combine xdy and ydx to get 2xdy.
\left(2xy+2y^{2}-3y-2x^{2}-x\right)d=0
Combine all terms containing d.
\left(-2x^{2}+2xy-x+2y^{2}-3y\right)d=0
The equation is in standard form.
d=0
Divide 0 by 2xy+2y^{2}-3y-2x^{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}