Evaluate
2\left(x+3y\right)
Expand
2x+6y
Share
Copied to clipboard
4x+2y-y-\left(2x-5y\right)
Combine x and 3x to get 4x.
4x+y-\left(2x-5y\right)
Combine 2y and -y to get y.
4x+y-2x-\left(-5y\right)
To find the opposite of 2x-5y, find the opposite of each term.
4x+y-2x+5y
The opposite of -5y is 5y.
2x+y+5y
Combine 4x and -2x to get 2x.
2x+6y
Combine y and 5y to get 6y.
4x+2y-y-\left(2x-5y\right)
Combine x and 3x to get 4x.
4x+y-\left(2x-5y\right)
Combine 2y and -y to get y.
4x+y-2x-\left(-5y\right)
To find the opposite of 2x-5y, find the opposite of each term.
4x+y-2x+5y
The opposite of -5y is 5y.
2x+y+5y
Combine 4x and -2x to get 2x.
2x+6y
Combine y and 5y to get 6y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}