Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{\left(x+2\right)\left(x-2\right)}{x-2}-\frac{5}{x-2}\right)\times \frac{3x\left(x-2\right)}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\left(x+2\right)\left(x-2\right)-5}{x-2}\times \frac{3x\left(x-2\right)}{x-3}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{5}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x+2x-4-5}{x-2}\times \frac{3x\left(x-2\right)}{x-3}
Do the multiplications in \left(x+2\right)\left(x-2\right)-5.
\frac{x^{2}-9}{x-2}\times \frac{3x\left(x-2\right)}{x-3}
Combine like terms in x^{2}-2x+2x-4-5.
\frac{\left(x^{2}-9\right)\times 3x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}
Multiply \frac{x^{2}-9}{x-2} times \frac{3x\left(x-2\right)}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{3x\left(x^{2}-9\right)}{x-3}
Cancel out x-2 in both numerator and denominator.
\frac{3x\left(x-3\right)\left(x+3\right)}{x-3}
Factor the expressions that are not already factored.
3x\left(x+3\right)
Cancel out x-3 in both numerator and denominator.
3x^{2}+9x
Expand the expression.
\left(\frac{\left(x+2\right)\left(x-2\right)}{x-2}-\frac{5}{x-2}\right)\times \frac{3x\left(x-2\right)}{x-3}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\left(x+2\right)\left(x-2\right)-5}{x-2}\times \frac{3x\left(x-2\right)}{x-3}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{5}{x-2} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x+2x-4-5}{x-2}\times \frac{3x\left(x-2\right)}{x-3}
Do the multiplications in \left(x+2\right)\left(x-2\right)-5.
\frac{x^{2}-9}{x-2}\times \frac{3x\left(x-2\right)}{x-3}
Combine like terms in x^{2}-2x+2x-4-5.
\frac{\left(x^{2}-9\right)\times 3x\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}
Multiply \frac{x^{2}-9}{x-2} times \frac{3x\left(x-2\right)}{x-3} by multiplying numerator times numerator and denominator times denominator.
\frac{3x\left(x^{2}-9\right)}{x-3}
Cancel out x-2 in both numerator and denominator.
\frac{3x\left(x-3\right)\left(x+3\right)}{x-3}
Factor the expressions that are not already factored.
3x\left(x+3\right)
Cancel out x-3 in both numerator and denominator.
3x^{2}+9x
Expand the expression.