Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x-12=3
Use the distributive property to multiply x+2 by x-6 and combine like terms.
x^{2}-4x-12-3=0
Subtract 3 from both sides.
x^{2}-4x-15=0
Subtract 3 from -12 to get -15.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-15\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-15\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+60}}{2}
Multiply -4 times -15.
x=\frac{-\left(-4\right)±\sqrt{76}}{2}
Add 16 to 60.
x=\frac{-\left(-4\right)±2\sqrt{19}}{2}
Take the square root of 76.
x=\frac{4±2\sqrt{19}}{2}
The opposite of -4 is 4.
x=\frac{2\sqrt{19}+4}{2}
Now solve the equation x=\frac{4±2\sqrt{19}}{2} when ± is plus. Add 4 to 2\sqrt{19}.
x=\sqrt{19}+2
Divide 4+2\sqrt{19} by 2.
x=\frac{4-2\sqrt{19}}{2}
Now solve the equation x=\frac{4±2\sqrt{19}}{2} when ± is minus. Subtract 2\sqrt{19} from 4.
x=2-\sqrt{19}
Divide 4-2\sqrt{19} by 2.
x=\sqrt{19}+2 x=2-\sqrt{19}
The equation is now solved.
x^{2}-4x-12=3
Use the distributive property to multiply x+2 by x-6 and combine like terms.
x^{2}-4x=3+12
Add 12 to both sides.
x^{2}-4x=15
Add 3 and 12 to get 15.
x^{2}-4x+\left(-2\right)^{2}=15+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=15+4
Square -2.
x^{2}-4x+4=19
Add 15 to 4.
\left(x-2\right)^{2}=19
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{19}
Take the square root of both sides of the equation.
x-2=\sqrt{19} x-2=-\sqrt{19}
Simplify.
x=\sqrt{19}+2 x=2-\sqrt{19}
Add 2 to both sides of the equation.