Evaluate
x+8
Expand
x+8
Graph
Share
Copied to clipboard
x^{2}-2^{2}-\left(x-4\right)\left(x+3\right)
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-4-\left(x-4\right)\left(x+3\right)
Calculate 2 to the power of 2 and get 4.
x^{2}-4-\left(x^{2}+3x-4x-12\right)
Apply the distributive property by multiplying each term of x-4 by each term of x+3.
x^{2}-4-\left(x^{2}-x-12\right)
Combine 3x and -4x to get -x.
x^{2}-4-x^{2}-\left(-x\right)-\left(-12\right)
To find the opposite of x^{2}-x-12, find the opposite of each term.
x^{2}-4-x^{2}+x-\left(-12\right)
The opposite of -x is x.
x^{2}-4-x^{2}+x+12
The opposite of -12 is 12.
-4+x+12
Combine x^{2} and -x^{2} to get 0.
8+x
Add -4 and 12 to get 8.
x^{2}-2^{2}-\left(x-4\right)\left(x+3\right)
Consider \left(x+2\right)\left(x-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-4-\left(x-4\right)\left(x+3\right)
Calculate 2 to the power of 2 and get 4.
x^{2}-4-\left(x^{2}+3x-4x-12\right)
Apply the distributive property by multiplying each term of x-4 by each term of x+3.
x^{2}-4-\left(x^{2}-x-12\right)
Combine 3x and -4x to get -x.
x^{2}-4-x^{2}-\left(-x\right)-\left(-12\right)
To find the opposite of x^{2}-x-12, find the opposite of each term.
x^{2}-4-x^{2}+x-\left(-12\right)
The opposite of -x is x.
x^{2}-4-x^{2}+x+12
The opposite of -12 is 12.
-4+x+12
Combine x^{2} and -x^{2} to get 0.
8+x
Add -4 and 12 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}